
SIMDRAM: An End-to-End Framework for
Bit-Serial SIMD Computing in DRAM

*Nastaran Hajinazar1,2 *Geraldo F. Oliveira1 Sven Gregorio1 João Dinis Ferreira1
Nika Mansouri Ghiasi1 Minesh Patel1 Mohammed Alser1 Saugata Ghose3

Juan Gómez-Luna1 Onur Mutlu1

1ETH Zürich 2Simon Fraser University 3University of Illinois at Urbana–Champaign

Abstract
Processing-using-DRAM has been proposed for a limited set of

basic operations (i.e., logic operations, addition). However, in order
to enable full adoption of processing-using-DRAM, it is necessary
to provide support for more complex operations. In this paper, we
propose SIMDRAM, a flexible general-purpose processing-using-
DRAM framework that (1) enables the efficient implementation
of complex operations, and (2) provides a flexible mechanism to
support the implementation of arbitrary user-defined operations.
The SIMDRAM framework comprises three key steps. The first
step builds an efficient MAJ/NOT representation of a given desired
operation. The second step allocates DRAM rows that are reserved
for computation to the operation’s input and output operands, and
generates the required sequence of DRAM commands to perform
the MAJ/NOT implementation of the desired operation in DRAM.
The third step uses the SIMDRAM control unit located inside the
memory controller to manage the computation of the operation
from start to end, by executing the DRAM commands generated
in the second step of the framework. We design the hardware and
ISA support for SIMDRAM framework to (1) address key system
integration challenges, and (2) allow programmers to employ new
SIMDRAM operations without hardware changes.

We evaluate SIMDRAM for reliability, area overhead, through-
put, and energy efficiency using a wide range of operations and
seven real-world applications to demonstrate SIMDRAM’s general-
ity. Our evaluations using a single DRAM bank show that (1) over
16 operations, SIMDRAM provides 2.0× the throughput and 2.6×
the energy efficiency of Ambit, a state-of-the-art processing-using-
DRAM mechanism; (2) over seven real-world applications, SIM-
DRAM provides 2.5× the performance of Ambit. Using 16 DRAM
banks, SIMDRAM provides (1) 88× and 5.8× the throughput, and
257× and 31× the energy efficiency, of a CPU and a high-end GPU,
respectively, over 16 operations; (2) 21× and 2.1× the performance
of the CPU and GPU, over seven real-world applications. SIMDRAM
incurs an area overhead of only 0.2% in a high-end CPU.

*Nastaran Hajinazar and Geraldo F. Oliveira are co-primary authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446749

CCS Concepts
• Computer systems organization→ Other architectures.

Keywords
Bulk Bitwise Operations, Processing-in-Memory, DRAM
ACM Reference Format:
Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Ferreira, Nika
Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gómez Luna, and Onur Mutlu. 2021. SIMDRAM: An End-to-End Framework
for Bit-Serial SIMD Computing in DRAM. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM,
New York, NY, USA, 21 pages. https://doi.org/10.1145/3445814.3446749

1 Introduction
The increasing prevalence and growing size of data in modern

applications has led to high energy and latency costs for computa-
tion in traditional computer architectures. Moving large amounts of
data between memory (e.g., DRAM) and the CPU across bandwidth-
limited memory channels can consume more than 60% of the total
energy in modern systems [17, 104]. To mitigate such costs, the
processing-in-memory (PIM) paradigm moves computation closer
to where the data resides, reducing (and in some cases eliminating)
the need to move data between memory and the processor.

There are two main approaches to PIM [43, 105]: (1) processing-
near-memory, where PIM logic is added to the same die as mem-
ory or to the logic layer of 3D-stacked memory [3–5, 14, 17–
19, 26, 28, 30, 41, 42, 44, 49, 55–57, 63, 66, 70, 82, 87, 96, 109, 113,
114, 119, 122, 126, 127, 152, 153]; and (2) processing-using-memory,
which makes use of the operational principles of the memory cells
themselves to perform computation by enabling interactions be-
tween cells [1, 23, 25, 29, 38, 40, 91, 130–132, 134, 136, 140, 141, 149].
Since processing-using-memory operates directly in the memory
arrays, it benefits from the large internal bandwidth and paral-
lelism available inside the memory arrays, which processing-near-
memory solutions cannot take advantage of.

A common approach for processing-using-memory architectures
is to make use of bulk bitwise computation. Many widely-used data-
intensive applications (e.g., databases, neural networks, graph ana-
lytics) heavily rely on a broad set of simple (e.g., AND, OR, XOR) and
complex (e.g., equality check, multiplication, addition) bitwise op-
erations. Ambit [129, 131], an in-DRAM processing-using-memory
accelerator, was the first work to propose exploiting DRAM’s analog
operational principles to perform bulk bitwise AND, OR, and NOT
logic operations. Inspired by Ambit, many prior works have ex-
plored DRAM (as well as NVM) designs that are capable of perform-
ing in-memory bitwise operations [6, 8–12, 25, 40, 52, 59, 92, 149].

1

https://doi.org/10.1145/3445814.3446749
https://doi.org/10.1145/3445814.3446749

However, a major shortcoming prevents these proposals from be-
coming widely applicable: they support only basic operations (e.g.,
Boolean operations, addition) and fall short on flexibly and easily
supporting new and more complex operations. Some prior works
propose processing-using-DRAM designs that support more com-
plex operations [25, 91]. However, such designs (1) require signifi-
cant changes to the DRAM subarray, and (2) support only a limited
and specific set of operations, lacking the flexibility to support new
operations and cater to the wide variety of applications that can
potentially benefit from in-memory computation.

Our goal in this paper is to design a framework that aids the
adoption of processing-using-DRAM by efficiently implementing
complex operations and providing the flexibility to support new de-
sired operations. To this end, we propose SIMDRAM, an end-to-end
processing-using-DRAM framework that provides the program-
ming interface, the ISA, and the hardware support for (1) efficiently
computing complex operations, and (2) providing the ability to
implement arbitrary operations as required, all in an in-DRAM
massively-parallel SIMD substrate. At its core, we build the SIM-
DRAM framework around a DRAM substrate that enables two
previously-proposed techniques: (1) vertical data layout in DRAM,
and (2) majority-based logic for computation.

Vertical Data Layout. Supporting bit-shift operations is es-
sential for implementing complex computations, such as addition
or multiplication. Prior works show that employing a vertical lay-
out [6, 15, 29, 38, 40, 53, 54, 64, 137, 146] for the data in DRAM, such
that all bits of an operand are placed in a single DRAM column (i.e.,
in a single bitline), eliminates the need for adding extra logic in
DRAM to implement shifting [25, 91]. Accordingly, SIMDRAM sup-
ports efficient bit-shift operations by storing operands in a vertical
fashion in DRAM. This provides SIMDRAM with two key benefits.
First, a bit-shift operation can be performed by simply copying a
DRAM row into another row (using RowClone [130], LISA [21],
NoM [135] or FIGARO [148]). For example, SIMDRAM can perform
a left-shift-by-one operation by copying the data in DRAM row 𝑗 to
DRAM row j+1. (Note that while SIMDRAM supports bit shifting,
we can optimize many applications to avoid the need for explicit
shift operations, by simply changing the row indices of the SIM-
DRAM commands that read the shifted data). Second, SIMDRAM
enables massive parallelism, wherein each DRAM column operates
as a SIMD lane by placing the source and destination operands of
an operation on top of each other in the same DRAM column.

Majority-Based Computation. Prior works use majority op-
erations to implement basic logical operations [40, 91, 129, 131]
(e.g., AND, OR) or addition [6, 9, 25, 39, 40, 91]. These basic op-
erations are then used as basic building blocks to implement the
target in-DRAM computation. SIMDRAM extends the use of the
majority operation by directly using only the logically complete
set of majority (MAJ) and NOT operations to implement in-DRAM
computation. Doing so enables SIMDRAM to achieve higher per-
formance, throughput, and reduced energy consumption compared
to using basic logical operations as building blocks for in-DRAM
computation. We find that a computation typically requires fewer
DRAM commands using MAJ and NOT than using basic logical
operations AND, OR, and NOT.

To aid the adoption of processing-using-DRAM by flexibly sup-
porting new and more complex operations, SIMDRAM addresses

two key challenges: (1) how to synthesize new arbitrary in-DRAM
operations, and (2) how to exploit an optimized implementation
and control flow for such newly-added operations while taking
into account key limitations of in-DRAM processing (e.g., DRAM
operations that destroy input data, limited number of DRAM rows
that are capable of processing-using-DRAM, and the need to avoid
costly in-DRAM copies). As a result, SIMDRAM is the first end-to-
end framework for processing-using-DRAM. SIMDRAM provides
(1) an effective algorithm to generate an efficient MAJ/NOT-based
implementation of a given desired operation; (2) an algorithm to
appropriately allocate DRAM rows to the operands of the operation
and an algorithm to map the computation to an efficient sequence
of DRAM commands to execute any MAJ-based computation; and
(3) the programming interface, ISA support and hardware com-
ponents required to (i) compute any new user-defined in-DRAM
operation without hardware modifications, and (ii) program the
memory controller for issuing DRAM commands to the correspond-
ing DRAM rows and correctly performing the computation. Such
end-to-end support enables SIMDRAM as a holistic approach that
facilitates the adoption of processing-using-DRAM through (1) en-
abling the flexibility to support new in-DRAM operations by pro-
viding the user with a simplified interface to add desired operations,
and (2) eliminating the need for adding extra logic to DRAM.

The SIMDRAM framework efficiently supports a wide range
of operations of different types. In this work, we demonstrate
the functionality of the SIMDRAM framework using an example
set of 16 operations including (1) N -input logic operations (e.g.,
AND/OR/XOR of more than 2 input bits); (2) relational operations
(e.g., equality/inequality check, greater than, maximum, minimum);
(3) arithmetic operations (e.g., addition, subtraction, multiplica-
tion, division); (4) predication (e.g., if-then-else); and (5) other com-
plex operations such as bitcount and ReLU [48]. The SIMDRAM
framework is not limited to these 16 operations, and can enable
processing-using-DRAM for other existing and future operations.
SIMDRAM is well-suited to application classes that (i) are SIMD-
friendly, (ii) have a regular access pattern, and (iii) are memory
bound. Such applications are common in domains such as data-
base analytics, high-performance computing, image processing,
and machine learning.

We compare the benefits of SIMDRAM to different state-of-the-
art computing platforms (CPU, GPU, and the Ambit [131] in-DRAM
computing mechanism). We comprehensively evaluate SIMDRAM’s
reliability, area overhead, throughput, and energy efficiency. We
leverage the SIMDRAM framework to accelerate seven application
kernels from machine learning, databases, and image processing
(VGG-13 [138], VGG-16 [138], LeNET [79], kNN [88], TPC-H [145],
BitWeaving [93], brightness [47]). Using a single DRAM bank, SIM-
DRAM provides (1) 2.0× the throughput and 2.6× the energy effi-
ciency of Ambit [131], averaged across the 16 implemented opera-
tions; and (2) 2.5× the performance of Ambit, averaged across the
seven application kernels. Compared to a CPU and a high-end GPU,
SIMDRAM using 16 DRAM banks provides (1) 257× and 31× the
energy efficiency, and 88× and 5.8× the throughput of the CPU and
GPU, respectively, averaged across the 16 operations; and (2) 21×
and 2.1× the performance of the CPU and GPU, respectively, av-
eraged across the seven application kernels. SIMDRAM incurs no
additional area overhead on top of Ambit, and a total area overhead

2

of only 0.2% in a high-end CPU. We also evaluate the reliability
of SIMDRAM under different degrees of manufacturing process
variation, and observe that it guarantees correct operation as the
DRAM process technology node scales down to smaller sizes.

We make the following key contributions:
• To our knowledge, this is the first work to propose a framework
to enable efficient computation of a flexible set and wide range
of operations in a massively parallel SIMD substrate built via
processing-using-DRAM.
• SIMDRAM provides a three-step framework to develop efficient
and reliable MAJ/NOT-based implementations of a wide range
of operations. We design this framework, and add hardware, pro-
gramming, and ISA support, to (1) address key system integration
challenges and (2) allow programmers to define and employ new
SIMDRAM operations without hardware changes.
• We provide a detailed reference implementation of SIMDRAM,
including required changes to applications, ISA, and hardware.
• We evaluate the reliability of SIMDRAM under different degrees
of process variation and observe that it guarantees correct oper-
ation as the DRAM technology scales to smaller node sizes.

2 Background
We first briefly explain the architecture of a typical DRAM chip.

Next, we describe prior processing-using-DRAM works that SIM-
DRAM builds on top of (RowClone [130] and Ambit [129, 131, 134])
and explain the implications of majority-based computation.

2.1 DRAM Basics
A DRAM system comprises a hierarchy of components, as Fig. 1

shows, starting with channels at the highest level. A channel is
subdivided into ranks, and a rank is subdivided into multiple banks
(e.g., 8-16). Each bank is composed of multiple (e.g., 64-128) 2D
arrays of cells known as subarrays. Cells within a subarray are
organized into multiple rows (e.g., 512-1024) and multiple columns
(e.g., 2-8 kB) [67, 83, 84]. A cell consists of an access transistor and a
storage capacitor that encodes a single bit of data using its voltage
level. The source nodes of the access transistors of all the cells in
the same column connect the cells’ storage capacitors to the same
bitline. Similarly, the gate nodes of the access transistors of all the
cells in the same row connect the cells’ access transistors to the
same wordline.

R
ow

 D
ec

od
er

Bitline

R
ow

B

uf
fe

r

Access
Transistor

Storage
Capacitor

Subarray

Bank

DRAM Cell

Memory
Controller

core core

chip chipchip…

Memory
Channel

Processor

Rank

DRAM Module

Wordline

Sense Amplifier

bi
tli

ne

bi
tli

ne

Figure 1: High-level overview of DRAM organization.

When a wordline is asserted, all cells along the wordline are con-
nected to their corresponding bitlines, which perturbs the voltage
of each bitline depending on the value stored in each cell’s capacitor.
A two-terminal sense amplifier connected to each bitline senses the
voltage difference between the bitline (connected to one terminal)
and a reference voltage (typically 1

2𝑉𝐷𝐷 ; connected to the other

terminal) and amplifies it to a CMOS-readable value. In doing so,
the sense amplifier terminal connected to the reference voltage is
amplified to the opposite (i.e., negated) value, which is shown as
the bitline terminal in Fig. 1. The set of sense amplifiers in each
subarray forms a logical row buffer, which maintains the sensed
data for as long as the row is open (i.e., the wordline continues to be
asserted). A read or write operation in DRAM includes three steps:
(1) ACTIVATE. The wordline of the target row is asserted, which

connects all cells along the row to their respective bitlines. Each
bitline shares charge with its corresponding cell capacitor, and
the resulting bitline voltage shift is sensed and amplified by the
bitline’s sense amplifier. Once the sense amplifiers finish am-
plification, the row buffer contains the values originally stored
within the cells along the asserted wordline.

(2) RD/WR. The memory controller then issues read or write com-
mands to columns within the activated row (i.e., the data within
the row buffer).

(3) PRECHARGE. The capacitor is disconnected from the bitline by
disabling the wordline, and the bitline voltage is restored to its
quiescent state (e.g., typically 1

2𝑉𝐷𝐷).

2.2 Processing-using-DRAM
2.2.1 In-DRAM Row Copy. RowClone [130] is a mechanism
that exploits the vast internal DRAM bandwidth to efficiently copy
rows inside DRAM without CPU intervention. RowClone enables
copying a source row𝐴 to a destination row 𝐵 in the same subarray
by issuing two consecutive ACTIVATE commands to these two rows,
followed by a PRECHARGE command. This command sequence is
called AAP [131]. The first ACTIVATE command copies the contents
of the source row𝐴 into the row buffer. The second ACTIVATE com-
mand connects the cells in the destination row 𝐵 to the bitlines.
Because the sense amplifiers have already sensed and amplified the
source data by the time row 𝐵 is activated, the data (i.e., voltage
level) in each cell of row 𝐵 is overwritten by the data stored in
the row buffer (i.e., row 𝐴’s data). Recent work [40] experimen-
tally demonstrates the feasibility of executing in-DRAM row copy
operations in unmodified off-the-shelf DRAM chips.

2.2.2 In-DRAM Bitwise Operations. Ambit [129, 131, 134]
shows that simultaneously activating three DRAM rows (via a
DRAM operation called Triple Row Activation, TRA) can be used
to perform bitwise Boolean AND, OR, and NOT operations on the
values contained within the cells of the three rows. When activat-
ing three rows, three cells connected to each bitline share charge
simultaneously and contribute to the perturbation of the bitline.
Upon sensing the perturbation, the sense amplifier amplifies the
bitline voltage to 𝑉𝐷𝐷 or 0 if at least two of the capacitors of the
three DRAM cells are charged or discharged, respectively. As such,
a TRA results in a Boolean majority operation (𝑀𝐴𝐽) among the
three DRAM cells on each bitline. A majority operation MAJ out-
puts a 1 (0) only if more than half of its inputs are 1 (0). In terms of
AND (·) and OR (+) operations, a 3-input majority operation can be
expressed as MAJ(A, B, C) = A · B + A · C + B · C.

Ambit implements MAJ by introducing a custom row decoder
(discussed in §3.1) that can perform a TRA by simultaneously ad-
dressing three wordlines. To use this decoder, Ambit defines a new
command sequence called AP, which issues (1) a TRA to compute
theMAJ of three rows, followed by (2) a PRECHARGE to close all three

3

rows.1 Ambit uses AP command sequences to implement Boolean
AND and OR operations by simply setting one of the inputs (e.g.,
𝐶) to 1 or 0. The AND operation is computed by setting 𝐶 to 0 (i.e.,
MAJ(A, B, 0) = A AND B). The OR operation is computed by
setting 𝐶 to 1 (i.e., MAJ(A, B, 1) = A OR B).

To achieve functional completeness alongside AND and OR op-
erations, Ambit implements NOT operations by exploiting the dif-
ferential design of DRAM sense amplifiers. As §2.1 explains, the
sense amplifier already generates the complement of the sensed
value as part of the activation process (bitline in Fig. 1). Therefore,
Ambit simply forwards bitline to a special DRAM row in the subar-
ray that consists of DRAM cells with two access transistors, called
dual-contact cells (DCCs). Each access transistor is connected to one
side of the sense amplifier and is controlled by a separate wordline
(d-wordline or n-wordline). By activating either the d-wordline or
the n-wordline, the row of DCCs can provide the true or negated
value stored in the row’s cells, respectively.

2.2.3 Majority-Based Computation. Activating multiple rows
simultaneously reduces the reliability of the value read by the sense
amplifiers due to manufacturing process variation, which intro-
duces non-uniformities in circuit-level electrical characteristics
(e.g., variation in cell capacitance levels) [131]. This effect worsens
with (1) an increased number of simultaneously activated rows, and
(2) more advanced technology nodes with smaller sizes. Accord-
ingly, although processing-using-DRAM can potentially support
majority operations with more than three inputs (as proposed by
prior works [6, 9, 92]) our realization of processing-using-DRAM
uses the minimum number of inputs required for a majority op-
eration (𝑁=3) to maintain the reliability of the computation. In
§7.5, we demonstrate via SPICE simulations that using 3-input MAJ
operations provides higher reliability compared to designs with
more than three inputs per MAJ operation. Using 3-input MAJ, a
processing-using-DRAM substrate does not require modifications
to the subarray organization (Fig. 2) beyond the ones proposed by
Ambit (§3.1). Recent work [40] experimentally demonstrates the
feasibility of executing MAJ operations by activating three rows in
unmodified off-the-shelf DRAM chips.

3 SIMDRAM Overview
SIMDRAM is a processing-using-DRAM framework whose goal

is to (1) enable the efficient implementation of complex operations
and (2) provide a flexible mechanism to support the implementa-
tion of arbitrary user-defined operations. We present the subarray
organization in SIMDRAM, describe an overview of the SIMDRAM
framework, and explain how to integrate SIMDRAM into a system.

3.1 Subarray Organization
In order to perform processing-using-DRAM, SIMDRAM makes

use of a subarray organization that incorporates additional func-
tionality to perform logic primitives (i.e., MAJ and NOT). This
subarray organization is identical to Ambit’s [131] and is similar to
DRISA’s [91]. Fig. 2 illustrates the internal organization of a subar-
ray in SIMDRAM, which resembles a conventional DRAM subarray.

1Although the ‘A’ in AP refers to a TRA operation instead of a conventional ACTIVATE
command, we use this terminology to remain consistent with the Ambit paper [131],
since an ACTIVATE command can be internally translated to a TRA operation by the
DRAM chip [131].

SIMDRAM requires only minimal modifications to the DRAM sub-
array (namely, a small row decoder that can activate three rows si-
multaneously) to enable computation. Like Ambit [131], SIMDRAM
divides DRAM rows into three groups: the Data group (D-group),
the Control group (C-group) and the Bitwise group (B-group).

Regular
row decoder

Small B-group
row decoder

C-group
C0,C1

Sense Amplifiers

D-group1006 rows

B-group
T0,T1,T2,T3
DCC0,DCC0
DCC1,DCC1

Figure 2: SIMDRAM subarray organization [131].

The D-group contains regular rows that store program or system
data. The C-group consists of two constant rows, called C0 and C1,
that contain all-0 and all-1 values, respectively. These rows are used
(1) as initial input values for a given SIMDRAM operation (e.g., the
initial carry-in bit in a full addition), or (2) to perform operations
that naturally require AND/OR operations (e.g., AND/OR reduc-
tions). The D-group and the C-group are connected to the regular
row decoder, which selects a single row at a time.

The B-group contains six regular rows, called T0, T1, T2, and T3;
and two rows of dual-contact cells (see §2.2.2), whose d-wordlines
are called DCC0 and DCC1, and whose n-wordlines are called DCC0
and DCC1, respectively. The B-group rows, called compute rows, are
designated to perform bitwise operations. They are all connected to
a special row decoder that can simultaneously activate three rows
using a single address (i.e., perform a TRA)

Using a typical subarray size of 1024 rows [20, 67, 69, 74, 85],
SIMDRAM splits the row addressing into 1006 D-group rows, 2
C-group rows, and 16 B-group rows.

3.2 Framework Overview
SIMDRAM is an end-to-end framework that provides the user

with the ability to implement an arbitrary operation in DRAM
using the AAP/AP command sequences. The framework comprises
three key steps, which are illustrated in Fig. 3. The first two steps
of the framework give the user the ability to efficiently implement
any desired operation in DRAM, while the third step controls the
execution flow of the in-DRAM computation transparently from
the user. We briefly describe these steps below, and discuss each
step in detail in §4.

The first step (❶ in Fig. 3a; §4.1) builds an efficient MAJ/NOT
representation of a given desired operation from its AND/OR/NOT-
based implementation. Specifically, this step takes as input a desired
operation and uses logic optimization to minimize the number of
logic primitives (and, therefore, the computation latency) required
to perform the operation. Accordingly, for a desired operation input
into the SIMDRAM framework by the user, the first step derives
its optimized MAJ/NOT-based implementation.

The second step (❷ in Fig. 3a; §4.2) allocates DRAM rows to the
operation’s inputs and outputs and generates the required sequence
of DRAM commands to execute the desired operation. Specifically,
this step translates the MAJ/NOT-based implementation of the oper-
ation into AAPs/APs. This step involves (1) allocating the designated
compute rows in DRAM to the operands, and (2) determining the
optimized sequence of AAPs/APs that are required to perform the

4

Step 1: Efficient
MAJ/NOT implementation

of desired operation

1

𝜇Program

AAP B6,B16
AP B15
AP B14
AAP B19
done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎 AAP B1, …

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New SIMDRAM 𝜇Program

ISA

SIMDRAM OutputUser Input

AND/OR/NOT logic

MAJ

MAJ/NOT logic

Step 2: Row
allocation to operands

and µProgram generation
for desired operation

2
Desired operation

Main memory

bbop_new

New SIMDRAM
instruction

(a) SIMDRAM Framework: Steps 1 and 2

User Input

foo () {

bbop_new

}

Step 3: Execution according to µProgram3

A
P

B
1
5

Memory Controller
𝜇Program

SIMDRAM-enabled application

SIMDRAM Output

Control Unit

AAP B6,B16
AP B15
AP B14
AAP B19
done

…

Instruction result
in memory

(b) SIMDRAM Framework: Step 3
Figure 3: Overview of the SIMDRAM framework.

operation. While doing so, SIMDRAM minimizes the number of
AAPs/APs required for a specific operation. This step’s output is a
µProgram, i.e., the optimized sequence of AAPs/APs that is stored in
main memory and will be used to execute the operation at runtime.

The third step (❸ in Fig. 3b; §4.3) executes the µProgram to
perform the operation. Specifically, when a user program encoun-
ters a bbop instruction (§5.2) associated with a SIMDRAM opera-
tion, the bbop instruction triggers the execution of the SIMDRAM
operation by performing its µProgram in the memory controller.
SIMDRAM uses a control unit in the memory controller that trans-
parently issues the sequence of AAPs/APs to DRAM, as dictated by
the µProgram. Once the µProgram is complete, the result of the
operation is held in DRAM.

3.3 Integrating SIMDRAM in a System
As we discuss in §1, SIMDRAM operates on data using a vertical

layout. Fig. 4 illustrates how data is organized within a DRAM
subarray when employing a horizontal data layout (Fig. 4a) and a
vertical data layout (Fig. 4b). We assume that each data element
is four bits wide, and that there are four data elements (each one
represented by a different color). In a conventional horizontal data
layout, data elements are stored in different DRAM rows, with the
contents of each data element ordered from the most significant
bit to the least significant bit (or vice versa) in a single row. In
contrast, in a vertical data layout, the DRAM row holds only the
𝑖-th bit of multiple data elements (where the number of elements is
determined by the bit width of the row). Therefore, when activating
a single DRAM row in a vertical data layout organization, a single
bit of data from each data element is read at once, which enables
in-DRAM bit-serial parallel computation [6, 15, 49, 91, 134, 137].

4-bit element size

R
ow

 D
ec

od
er

least significant bit (LSB)most significant bit (MSB)

(a) Horizontal data layout (b) Vertical data layout

4-
bi

t e
le

m
en

t s
iz

e

R
ow

 D
ec

od
er

MSB

LSB

Figure 4: Data layout: horizontal vs. vertical.

To maintain compatibility with traditional system software, we
store regular data in the conventional horizontal layout and provide

hardware support (explained in §5.1) to transpose horizontally-
laid-out data into the vertical layout for in-DRAM computation.
To simplify program integration, we provide ISA extensions that
expose SIMDRAM operations to the programmer (§5.2).

4 SIMDRAM Framework
We describe the three steps of the SIMDRAM framework in-

troduced in §3.2, using the full addition operation as a running
example.

4.1 Step 1: Efficient MAJ/NOT Implementation
SIMDRAM implements in-DRAM computation using the

logically-complete set of MAJ and NOT logic primitives, which
requires fewer AAP/AP command sequences to perform a given op-
eration when compared to using AND/OR/NOT. As a result, the
goal of the first step in the SIMDRAM framework is to build an
optimized MAJ/NOT implementation of a given operation that ex-
ecutes the operation using as few AAP/AP command sequences as
possible, thus minimizing the operation’s latency. To this end, Step
1 transforms an AND/OR/NOT representation of a given operation
to an optimized MAJ/NOT representation using a transformation
process formalized by prior work [7].

The transformation process uses a graph-based representation
of the logic primitives, called an AND–OR–Inverter Graph (AOIG)
for AND/OR/NOT logic, and a Majority–Inverter Graph (MIG) for
MAJ/NOT logic. An AOIG is a logic representation structure in the
form of a directed acyclic graph where each node represents an
AND or OR logic primitive. Each edge in an AOIG represents an
input/output dependency between nodes. The incoming edges to a
node represent input operands of the node and the outgoing edge of
a node represents the output of the node. The edges in an AOIG can
be either regular or complemented (which represents an inverted
input operand; denoted by a bubble on the edge). The direction of
the edges follows the natural direction of computation from inputs
to outputs. Similarly, a MIG is a directed acyclic graph in which
each node represents a three-input MAJ logic primitive, and each
regular/complemented edge represents one input or output to the
MAJ primitive that the node represents. The transformation process
consists of two parts that operate on an input AOIG.

The first part of the transformation process naively substitutes
AND/OR primitives with MAJ primitives. Each two-input AND or
OR primitive is simply replaced with a three-input MAJ primitive,
where one of the inputs is tied to logic 0 or logic 1, respectively.
This naive substitution yields a MIG that correctly replicates the
functionality of the input AOIG, but the MIG is likely inefficient.

The second part of the transformation process takes the ineffi-
cient MIG and uses a greedy algorithm (see Appendix A) to apply
a series of transformations that identifies how to consolidate multi-
ple MAJ primitives into a smaller number of MAJ primitives with
identical functionality. This yields a smaller MIG, which in turn
requires fewer logic primitives to perform the same operation that
the unoptimized MIG (and, thus, the input AOIG) performs. Fig. 5a
shows the optimized MIG produced by the transformation process
for a full addition operation.

4.2 Step 2: µProgram Generation
Each SIMDRAM operation is stored as a µProgram, which con-

sists of a series of microarchitectural operations (µOps) that SIM-
DRAM uses to execute the SIMDRAM operation in DRAM. The

5

0: AAP B6,B16 // 𝐷𝐶𝐶1 ← 𝐶0
1: Loop: // 𝐷𝐶𝐶1 ℎ𝑜𝑙𝑑𝑠 𝐶𝑜𝑢𝑡
2: AAP B8,B18 // 𝐷𝐶𝐶0, 𝑇0 ← 𝐴𝑖
3: AAP B12,B19 // 𝑇0, 𝑇1, 𝑇2 ← 𝐵𝑖
4: AAP B3,B6 // 𝑇3 ← 𝐷𝐶𝐶1
5: AP B15 //𝑀𝐴𝐽(𝐷𝐶𝐶1, 𝑇0, 𝑇2)
6: AP B14 // 𝑀𝐴𝐽(𝐷𝐶𝐶0, 𝑇1, 𝑇3)
7: AAP B0,B7 // 𝑇0 ← 𝐷𝐶𝐶1
8: AAP B1,B18 // 𝑇1 ← 𝐴𝑖
9: AAP B21,B13 // S𝑖 ← 𝑀𝐴𝐽(𝑇0, 𝑇1, 𝑇3)
10: subi B22,#1

// repeat
11: bnez B22,Loop

12: done // complete

(c) Step 2 Output: µProgram for full addition

Task 1Level 0

Level 1

Edge Row
A DCC0
B T1
Cin T0

A T2
B DCC1
Cin T3

Out1 T0
A T1

Cout DCC1

Task 2

S

MAJ

MAJMAJ
A

Out1 C ou
t

3-input
MAJ node

A B Cin

Output edge

Negated
Input edge

Out1

Regular Input
edge

(a) Step 2 Input: Optimized MIG for full addition (b) Row-to-operand allocation

A B Cin A B Cin

Figure 5: (a) Optimized MIG; (b) row-to-operand allocation;
(c) µProgram for full addition.

goal of the second step is to take the optimized MIG generated
in Step 1 and generate a µProgram that executes the SIMDRAM
operation that the MIG represents. To this end, as shown in Fig. 5,
the second step of the framework performs two key tasks on the
optimized MIG: (1) allocating DRAM rows to the operands, which
assigns each input operand (i.e., an incoming edge) of each MAJ
node in the MIG to a DRAM row (Fig. 5b); and (2) generating the
µProgram, which creates the series of µOps that perform the MAJ
and NOT logic primitives (i.e., nodes) in the MIG, while maintaining
the correct flow of the computation (Fig. 5c). In this section, we first
describe the µOps used in SIMDRAM (§4.2.1). Second, we explain
the process of allocating DRAM rows to the input operands of the
MAJ nodes in the MIG to DRAM rows (§4.2.2). Third, we explain
the process of generating the µProgram (§4.2.3).

4.2.1 SIMDRAM µOps. Fig. 6a shows the set of µOps that we
implement in SIMDRAM. Each µOp is either (1) a command se-
quence that is issued by SIMDRAM to a subarray to perform a
portion of the in-DRAM computation, or (2) a control operation
that is used by the SIMDRAM control unit (see §4.3) to manage the
execution of the SIMDRAM operation. We further break down the
command sequence µOps into one of three types: (1) row copy, a
µOp that performs in-DRAM copy from a source memory address
to a destination memory address using an AAP command sequence;
(2)majority, a µOp that performs a majority logic primitive on three
DRAM rows using an AP command sequence (i.e., it performs a
TRA); and (3) arithmetic, four µOps that perform simple arithmetic
operations on SIMDRAM control unit registers required to control
the execution of the operation (addi, subi, comp, module). We pro-
vide two control operation µOps to support loops and termination
in the SIMDRAM control flow (bnez, done).

𝜇Register Contents
B0 𝑇0 𝑎𝑑𝑑𝑟
B1 𝑇1 𝑎𝑑𝑑𝑟
B2 𝑇2 𝑎𝑑𝑑𝑟
B3 𝑇3 𝑎𝑑𝑑𝑟
B4 𝐷𝐶𝐶0 𝑎𝑑𝑑𝑟
B5 𝐷𝐶𝐶0 𝑎𝑑𝑑𝑟
B6 𝐷𝐶𝐶1 𝑎𝑑𝑑𝑟
B7 𝐷𝐶𝐶1 𝑎𝑑𝑑𝑟

𝜇Register Contents
B8 𝐷𝐶𝐶0, 𝑇0 𝑎𝑑𝑑𝑟
B9 𝐷𝐶𝐶1, 𝑇1 𝑎𝑑𝑑𝑟
B10 𝑇2, 𝑇3 𝑎𝑑𝑑𝑟
B11 𝑇0, 𝑇3 𝑎𝑑𝑑𝑟
B12 𝑇0, 𝑇1, 𝑇2 𝑎𝑑𝑑𝑟
B13 𝑇0, 𝑇1, 𝑇3 𝑎𝑑𝑑𝑟
B14 𝐷𝐶𝐶0, 𝑇1, 𝑇3 𝑎𝑑𝑑𝑟
B15 𝐷𝐶𝐶1, 𝑇0, 𝑇2 𝑎𝑑𝑑𝑟

𝜇Register Contents
B16 𝐶0 𝑎𝑑𝑑𝑟
B17 𝐶1 𝑎𝑑𝑑𝑟
B18 𝑖𝑛𝑝𝑢𝑡 𝑎𝑑𝑑𝑟
B19 𝑖𝑛𝑝𝑢𝑡 𝑎𝑑𝑑𝑟
B20 𝑖𝑛𝑝𝑢𝑡 𝑎𝑑𝑑𝑟
B21 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑑𝑑𝑟
B22 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒

B23~B31 𝐺𝑃 𝑟𝑒𝑔𝑠.

(b) 𝛍Registers

Opcode Mnemonic Type
000 AAP Row Copy
001 AP Majority
010 addi

Arithmetic011 subi
100 comp
101 module
110 bnez

Control111 done

Row Copy

Majority

Arithmetic

Control

(a) 𝛍Ops and their description

op µReg dst. µReg src.
3 5 5

op µReg
3 5

op µReg # incr.
3 5 8

op
3

16 bits

Figure 6: µOps and µRegisters in SIMDRAM.

During µProgram generation, the SIMDRAM framework con-
verts the MIG into a series of µOps. Note that MIG represents a
1-bit-wide computation of an operation. Thus, to implement a multi-
bit-wide SIMDRAM operation, the framework needs to repeat the
series of the µOps that implement the MIG 𝑛 times, where 𝑛 is the
number of bits in the operands of the SIMDRAM operation. To this
end, SIMDRAM uses the arithmetic and control µOps to repeat the
1-bit-wide computation 𝑛 times, transparently to the programmer.

To support the execution of µOps, SIMDRAM utilizes a set of
µRegisters (Fig. 6b) located in the SIMDRAM control unit (§4.3). The
framework uses µRegisters (1) to store the memory addresses of
DRAM rows in the B-group and C-group (Fig. 3.1) of the subarray
(µRegisters B0–B17), (2) to store the memory addresses of input
and output rows for the computation (µRegisters B18–B22), and
(3) as general-purpose registers during the execution of arithmetic
and control operations (µRegisters B23–B31).

4.2.2 Task 1: Allocating DRAM Rows to the Operands. The
goal of this task is to allocate DRAM rows to the input operands (i.e.,
incoming edges) of eachMAJ node in the operation’s MIG, such that
weminimize the total number of µOps needed to compute the opera-
tion. To this end, we present a new allocation algorithm inspired by
the linear scan register allocation algorithm [121]. However, unlike
register allocation algorithms, our allocation algorithm considers
two extra constraints that are specific to processing-using-DRAM:
(1) performing MAJ in DRAM has destructive behavior, i.e., a TRA
overwrites the original values of the three input rows with the MAJ
output; and (2) the number of compute rows (i.e., B-group in Fig. 2)
that are designated to perform bitwise operations is limited (there
are only six compute rows in each subarray, as discussed in §3.1).

The SIMDRAM row-to-operand allocation algorithm receives the
operation’s MIG as input. The algorithm assumes that the input
operands of the operation are already stored in separate rows of
the D-group in the subarray using vertical layout (§3.3), before the
computation of the operation starts. The algorithm then does a
topological traversal starting with the leftmost MAJ node at the
highest level of the MIG (e.g., level 0 in Fig. 5a), allocating compute
rows to the input operands of each MAJ node in the current level
of the MIG, before moving to the next lower level of the graph.
The algorithm finishes once DRAM rows are allocated to all the
input operands of all the MAJ nodes in the MIG. Fig. 5b shows these
allocations as the output of Task 1 for the full addition example. The
resulting row-to-operand allocation is then used in the second task
in step two (§4.2.3) to generate the series of µOps to compute the
operation that the MIG represents. We describe our row-to-operand
allocation algorithm in Appendix B.

4.2.3 Task 2: Generating a µProgram. The goal of this task
is to use the MIG and the DRAM row allocations from Task 1 to
generate the µOps of the µProgram for our SIMDRAM operation.
To this end, Task 2 (1) translates the MIG into a series of row copy
and majority µOps (i.e., AAPs/APs), (2) optimizes the series of µOps
to reduce the number of AAPs/APs, and (3) generalizes the one-bit
bit-serial operation described by the MIG into an 𝑛-bit operation
by utilizing SIMDRAM’s arithmetic and control µOps.

Translating the MIG into a Series of Row Copy and Major-
ity µOps. The allocation produced during Task 1 dictates how
DRAM rows are allocated to each edge in the MIG during the

6

µProgram. With this information, the framework can generate the
appropriate series of row copies and majority µOps to reflect the
MIG’s computation in DRAM. To do so, we traverse the input MIG
in topological order. For each node, we first assign row copy µOps
(using the AAP command sequence) to the node’s edges. Then, we
assign a majority µOp (using the AP command sequence) to execute
the current MAJ node, following the DRAM row allocation assigned
to each edge of the node. The framework repeats this procedure
for all the nodes in the MIG. To illustrate, we assume that the SIM-
DRAM allocation algorithm allocates DRAM rows DCC0, T1, and
T0 to edges A, B, and C𝑖𝑛 , respectively, of the blue node in the full
addition MIG (Fig. 5a). Then, when visiting this node, we generate
the following series of µOps:

AAP DCC0, A; // DCC0← A
AAP T1, B; // T1← B
AAP T0, C𝑖𝑛 ; // T0← C𝑖𝑛
AP DCC0, T1, T0 // MAJ(NOT(A), B, C𝑖𝑛)

Optimizing the Series of µOps.After traversing all of the nodes
in the MIG and generating the appropriate series of µOps, we opti-
mize the series of µOps by coalescing AAP/AP command sequences,
which we can do in one of two cases.
Case 1:we can coalesce a series of row copy µOps if all of the µOps
have the same µRegister source as an input. For example, consider
a series of two AAPs that copy data array 𝐴 into rows T2 and T3.
We can coalesce this series of AAPs into a single AAP issued to the
wordline address stored in µRegister B10 (see Fig. 6a). This wordline
address leverages the special row decoder in the B-group (which
is part of the Ambit subarray structure [131]) to activate multiple
DRAM rows in the group at once with a single activation command.
For our example, activating µRegister B10 allows the AAP command
sequence to copy array 𝐴 into both rows T2 and T3 at once.
Case 2: we can coalesce an AP command sequence (i.e., a majority
µOp) followed by an AAP command sequence (i.e., a row copy µOp)
when the destination of the AAP is one of the rows used by the AP.
For example, consider an AP that performs a MAJ logic primitive
on DRAM rows T0, T1, and T2 (storing the result in all three rows),
followed by an AAP that copies µRegister B12 (which refers to rows
T0, T1, and T2) to row T3. The AP followed by the AAP puts the
majority value in all four rows (T0, T1, T2, T3). The two command
sequences can be coalesced into a single AAP (AAP T3, B12), as the
first ACTIVATE would automatically perform the majority on rows
T0, T1, and T2 by activating all three rows simultaneously. The
second ACTIVATE then copies the value from those rows into T3.

Generalizing the Bit-Serial Operation into an 𝑛-bit Opera-
tion. Once all potential µOp coalescing is complete, the framework
now has an optimized 1-bit version of the computation. We gen-
eralize this 1-bit µOp series into a loop body that repeats 𝑛 times
to implement an 𝑛-bit operation. We leverage the arithmetic and
control µOps available in SIMDRAM to orchestrate the 𝑛-bit com-
putation. Data produced by the computation of one bit that needs
to be used for computation of the next bit (e.g., the carry bit in full
addition) is kept in a B-group row across the two computations,
allowing for bit-to-bit data transfer without the need for dedicated
shifting circuitry.

The final series of µOps produced after this step is then packed
into a µProgram and stored in DRAM for future use.2 Fig. 5c shows
the final µProgram produced at the end of Step 2 for the full addi-
tion operation. The figure shows the optimized series of µOps that
generates the 1-bit implementation of the full addition (lines 2–9),
and the arithmetic and control µOps included to enable the 𝑛-bit
implementation of the operation (lines 10–11).

Benefits of the µProgramAbstraction. The µProgram abstrac-
tion that we use to store SIMDRAM operations provides three main
advantages to the framework. First, it allows SIMDRAM tominimize
the total number of new CPU instructions required to implement
SIMDRAM operations, thereby reducing SIMDRAM’s impact on
the ISA. While a different implementation could use more new CPU
instructions to express finer-grained operations (e.g., an AAP), we
believe that using a minimal set of new CPU instructions simplifies
adoption and software design. Second, the µProgram abstraction
enables a smaller application binary size since the only information
that needs to be placed in the application’s binary is the address
of the µProgram in main memory. Third, the µProgram provides
an abstraction to relieve the end user from low-level programming
with MAJ/NOT operations that is equivalent to programming with
Boolean logic. We discuss how a user program invokes SIMDRAM
µPrograms in §5.2.

4.3 Step 3: Operation Execution
Once the framework stores the generated µProgram for a SIM-

DRAM operation in DRAM, the SIMDRAM hardware can now
receive program requests to execute the operation. To this end,
we discuss the SIMDRAM control unit, which handles the execu-
tion of the µProgram at runtime. The control unit is designed as
an extension of the memory controller, and is transparent to the
programmer. A program issues a request to perform a SIMDRAM
operation using a bbop instruction (introduced by Ambit [131]),
which is one of the CPU ISA extensions to allow programs to in-
teract with the SIMDRAM framework (see §5.2). Each SIMDRAM
operation corresponds to a different bbop instruction. Upon receiv-
ing the request, the control unit loads the µProgram corresponding
to the requested bbop from memory, and performs the µOps in the
µProgram. Since all input data elements of a SIMDRAM operation
may not fit in one DRAM row, the control unit repeats the µProgram
𝑖 times, where 𝑖 is the total number of data elements divided by the
number of elements in a single DRAM row.

Fig. 7 shows a block diagram of the SIMDRAM control unit,
which consists of nine main components: (1) a bbop FIFO that re-
ceives the bbops from the program, (2) a µProgramMemory allocated
in DRAM (not shown in the figure), (3) a µProgram Scratchpad that
holds commonly-used µPrograms, (4) a µOp Memory that holds the
µOps of the currently running µProgram, (5) a µRegister Addressing
Unit that generates the physical row addresses being used by the
µRegisters that map to DRAM rows (based on the µRegister-to-row
assignments for B0–B17 in Fig. 6), (6) a µRegister File that holds
the non-row-mapped µRegisters (B18–B31 in Fig. 6), (7) a Loop
Counter that tracks the number of remaining data elements that the

2In our example implementation of SIMDRAM, a µProgram has a maximum size of
128 bytes, as this is enough to store the largest µProgram generated in our evaluations
(the division operation, which requires 56 µOps, each two bytes wide, resulting in a
total µProgram size of 112 bytes.)

7

µProgram needs to be performed on, (8) a µOp Processing FSM that
controls the execution flow and issues AAP/AP command sequences,
and (9) a µProgram counter (µPC). SIMDRAM reserves a region of
DRAM for the µProgram Memory to store µPrograms correspond-
ing to all SIMDRAM operations. At runtime, the control unit stores
the most commonly used µPrograms in the µProgram Scratchpad,
to reduce the overhead of fetching µPrograms from DRAM.

…

…𝜇Op 0 𝜇Op 63𝜇Op 62

1024

µProgram
Scratchpad

+1

bbop_op

/
…

𝜇Op 0
𝜇Op 1

𝜇Op 63

µPC

16

µOp
Proccessing

FSMbranch
target

AAP/AP

µOp Memory

shift
amount

1 size

dst, src_1, src_2, n

𝜇Program
𝜇Op

2

3

4

5

en_decrement6is_zero7

reg dst.
reg src.

1024

Loop
Counter

bbop
FIFO

µRegister
Addressing

Unit

µRegister
File…𝜇Op 0 𝜇Op 63𝜇Op 62

…𝜇Op 0 𝜇Op 63𝜇Op 62

From 𝛍Program
Memory

From
CPU

To Memory
Controller

Figure 7: SIMDRAM control unit.

At runtime, when a CPU running a user program reaches a bbop
instruction, it forwards the bbop to the SIMDRAM control unit (1
in Fig. 7). The control unit enqueues the bbop in the bbop FIFO. The
control unit goes through a four-stage procedure to execute the
queued bbops one at a time.

In the first stage, the control unit fetches and decodes the bbop at
the head of the FIFO (2). Decoding a bbop involves (1) setting the
index of the µProgram Scratchpad to the bbop opcode; (2) writing
the number of loop iterations required to perform the operation
on all elements (i.e., the number of data elements divided by the
number of elements in a single DRAM row) into the Loop Counter;
and (3) writing the base DRAM addresses of the source and destina-
tion arrays involved in the computation, and the size of each data
element, to the µRegister Addressing Unit.

In the second stage, the control unit copies the µProgram cur-
rently indexed in the µProgram Scratchpad to the µOp Memory
(3). At this point, the control unit is ready to start executing the
µProgram, one µOp at a time.

In the third stage, the current µOp is fetched from the µOp
Memory, which is indexed by the µPC. The µOp Processing FSM
decodes the µOp, and determines which µRegisters are needed (❹).
For µRegisters B0–B17, the µRegister Addressing Unit generates
the DRAM addresses that correspond to the requested registers
(see Fig. 6) and sends the addresses to the µOp Processing FSM. For
µRegisters B18–B31, the µRegister File provides the register values
to the µOp Processing FSM.

In the fourth stage, the µOp Processing FSM executes the µOp. If
the µOp is a command sequence, the corresponding commands are
sent to the memory controller’s request queue (5) and the µPC is
incremented. If the µOp is a done control operation, this indicates
that all of the command sequence µOps have been performed for
the current iteration. The µOp Processing FSM then decrements the
Loop Counter (6). If the decremented Loop Counter is greater than
zero, the µOp Processing FSM shifts the base source and destination
addresses stored in the µRegister Addressing Unit to move onto the
next set of data elements,3 and resets the µPC to the first µOp in the
µOp Memory. If the decremented Loop Counter equals zero, this
3The source and destination base addresses are incremented by 𝑛 rows, where 𝑛 is the
data element size. This is because each DRAM row contains one bit of a set of elements,
so SIMDRAM uses 𝑛 consecutive rows to hold all 𝑛 bits of the set of elements.

indicates that the control unit has completed executing the current
bbop. The control unit then fetches the next bbop from the bbop
FIFO (7), and repeats all four stages for the next bbop.

4.4 Supported Operations
We use our framework to efficiently support a wide range of

operations of different types. In this paper, we evaluate (in §7) a set
of 16 SIMDRAM operations of five different types for 𝑛-bit data ele-
ments: (1) 𝑁 -input logic operations (OR-/AND-/XOR-reduction
across 𝑁 inputs); (2) relational operations (equality/inequality
check, greater-/less-than check, greater-than-or-equal-to check,
and maximum/minimum element in a set); (3) arithmetic opera-
tions (addition, subtraction, multiplication, division, and absolute
value); (4) predication (if-then-else); and (5) other complex oper-
ations (bitcount, and ReLU). We support four different element
sizes that correspond to data type sizes in popular programming
languages (8-bit, 16-bit, 32-bit, 64-bit).

5 System Integration of SIMDRAM
We discuss several challenges of integrating SIMDRAM in a

real system, and how we address them: (1) data layout and how
SIMDRAM manages storing the data required for in-DRAM com-
putation in a vertical layout (§5.1); (2) ISA extensions for and pro-
gramming interface of SIMDRAM (§5.2); (3) how SIMDRAMhandles
page faults, address translation, coherence, and interrupts (§5.3);
(4) how SIMDRAM manages computation on large amounts of data
(§5.4); (5) security implications of SIMDRAM (§5.5); and (6) current
limitations of the SIMDRAM framework (§5.6).

5.1 Data Layout
We envision SIMDRAM as supplementing (not replacing) the tra-

ditional processing elements. As a result, a program in a SIMDRAM-
enabled system can have a combination of CPU instructions and
SIMDRAM instructions, with possible data sharing between the
two. However, while SIMDRAM operates on vertically-laid-out
data (§3.3), the other system components (including the CPU) ex-
pect the data to be laid out in the traditional horizontal format,
making it challenging to share data between SIMDRAM and CPU
instructions. To address this challenge, memory management in
SIMDRAM needs to (1) support both horizontal and vertical data
layouts in DRAM simultaneously; and (2) transform vertically-laid-
out data used by SIMDRAM to a horizontal layout for CPU use, and
vice versa. We cannot rely on software (e.g., compiler or application
support) to handle the data layout transformation, as this would
go through the on-chip memory controller, and would introduce
significant data movement, and thus latency, between the DRAM
and CPU during the transformation. To avoid data movement dur-
ing transformation, SIMDRAM uses a specialized hardware unit
placed between the last-level cache (LLC) and the memory con-
troller, called the data transposition unit, to transform data from
horizontal data layout to vertical data layout, and vice versa. The
transposition unit ensures that for every SIMDRAM object, its cor-
responding data is in a horizontal layout whenever the data is in
the cache, and in a vertical layout whenever the data is in DRAM.

Fig. 8 shows the key components of the transposition unit. The
transposition unit keeps track of the memory objects that are used
by SIMDRAM operations in a small cache in the transposition unit,
called the Object Tracker. To add an entry to the Object Tracker

8

when allocating a memory object used by SIMDRAM, the program-
mer adds an initialization instruction called bbop_trsp_init (§5.2)
immediately after the malloc that allocates the memory object (❶
in Fig. 8). Assuming a system that employs lazy allocation, the
bbop_trsp_init instruction informs the operating system (OS)
that the memory object is a SIMDRAM object. This allows the OS to
perform virtual-to-physical memory mapping optimizations for the
object before the allocation starts (e.g., mapping the arguments of an
operation to the same row/column in the physical memory). When
the SIMDRAM object’s physical memory is allocated, the OS inserts
the base physical address, the total size of the allocated data, and the
size of each element in the object (provided by bbop_trsp_init)
into the Object Tracker. As the initially-allocated data is placed
in the CPU cache, the data starts in a horizontal layout until it is
evicted from the cache.

Last–Level Cache

1 bbop_trsp_init

Store Unit6

4 LLC writeback request

Cache line(s)
from DRAM

Tr
an

sp
os

iti
on

 U
ni

t

8LL
C

 re
ad

re

qu
es

t

Fetch Unit

LL
C

 w
rit

eb
ac

k
re

qu
es

t

3
Invalidations

5

C
ac

he
 li

ne
(s

) f
ro

m
 D

R
A

M
2 LLC writeback

request

OThit OTmiss

OTmissOThit

OT hit/miss for LLC read requests

LLC read request (OThit)

OT hit/miss for LLC writeback requests

LLC writeback request (OThit)
LLC writeback request (OTmiss)

LLC read data

Memory ControllerLLC writeback data

7 LLC read
request

Object Tracker
(OT)

Horizontal → Vertical
Transpose

cache line width

Transpose Buffer

n …

5 Vertical → Horizontal
Transpose

n

Transpose Buffer

…

9

lin
e

w
id

th

ca
ch

e

LLC read request (OTmiss)

Figure 8: Major components of the data transposition unit.

SIMDRAM stores SIMDRAM objects in DRAM using a vertical
layout, since this is the layout used for in-DRAM computation
(§3.3). Since a vertically-laid-out 𝑛-bit element spans 𝑛 different
cache lines in DRAM (with each cache line in a different DRAM
row), SIMDRAM partitions SIMDRAM objects into SIMDRAM object
slices, each of which is 𝑛 cache lines in size. Thus, a SIMDRAM
object slice in DRAM contains the vertically-laid-out bits of as
many elements as bits in a cache line (e.g., 512 in a 64 B cache
line). Cache line 𝑖 (0 ≤ 𝑖 < 𝑛) of an object slice contains bit 𝑖 of
all elements stored in the slice. Whenever any one data element
within a slice is requested by the CPU, the entire SIMDRAM object
slice is brought into the LLC. Similarly, whenever a cache line from
a SIMDRAM object is written back from the LLC to DRAM (i.e., it
is evicted or flushed), all 𝑛 − 1 remaining cache lines of the same
SIMDRAM object slice are written back as well.4 The use of object
slices ensures correctness and simplifies the transposition unit.

Whenever the LLCwrites back a cache line to DRAM (2 in Fig. 8),
the transposition unit checks the Object Tracker to see whether
the cache line belongs to a SIMDRAM object. If the LLC request
misses in the Object Tracker, the cache line does not belong to any
SIMDRAM object, and the writeback request is forwarded to the
memory controller as in a conventional system. If the LLC request
hits in the Object Tracker, the cache line belongs to a SIMDRAM
object, and thus must be transposed from the horizontal layout to
the vertical layout. An Object Tracker hit triggers two actions.

First, the Object Tracker issues invalidation requests to all 𝑛 − 1
remaining cache lines of the same SIMDRAM object slice (3 in
4The Dirty-Block Index [128] could be adapted for this purpose.

Fig. 8).4 We extend the LLC to support a special invalidation request
type, which sends both dirty and unmodified cache lines to the
transposition unit (unlike a regular invalidation request, which sim-
ply invalidates unmodified cache lines). The Object Tracker issues
these invalidation requests for the remaining cache lines, ensuring
that all cache lines of the object slice arrive at the transposition
unit to perform the horizontal-to-vertical transposition correctly.

Second, the writeback request is forwarded (4 in Fig. 8) to a
horizontal-to-vertical transpose buffer, which performs the bit-by-
bit transposition. We design the transpose buffer (5) such that it
can transpose all bits of a horizontally-laid-out cache line in a single
cycle. As the other cache lines belonging from the slice are evicted
(as a result of the Object Tracker’s invalidation requests) and arrive
at the transposition unit, they too are forwarded to the transpose
buffer, and their bits are transposed. Each horizontally-laid-out
cache line maps to a specific set of bit columns in the vertically-
laid-out cache line, which is determined using the physical address
of the horizontally-laid-out cache line. Once all 𝑛 cache lines in
the SIMDRAM object slice have been transposed, the Store Unit
generates DRAM write requests for each vertically-laid-out cache
line, and sends the requests to the memory controller (6).

When a program wants to read data that belongs to a SIMDRAM
object, and the data is not in the CPU caches, the LLC issues a read
request to DRAM (7 in Fig. 8). If the address of the read request
does not hit in the Object Tracker, the request is forwarded to the
memory controller, as in a conventional system. If the address of the
read request hits in the Object Tracker, the read request is part of a
SIMDRAM object, and the Object Tracker sends a signal (8) to the
Fetch Unit. The Fetch Unit generates the read requests for all of the
vertically-laid-out cache lines that belong to the same SIMDRAM
object slice as the requested data, and sends these requests to the
memory controller.When the request responses for the object slice’s
cache lines arrive, the Fetch Unit sends the cache lines to a vertical-
to-horizontal transpose buffer (9), which can transpose all bits
of one vertically-laid-out cache line into the horizontally-laid-out
cache lines in one cycle. The horizontally-laid-out cache lines are
then inserted into the LLC. The 𝑛 − 1 cache lines that were not
part of the original memory request, but belong to the same object
slice, are inserted into the LLC in a manner similar to conventional
prefetch requests [142].

5.2 ISA Extensions and Programming Interface
The lack of an efficient and expressive programmer/system in-

terface can negatively impact the performance and usability of the
SIMDRAM framework. This would put data transposition on the
critical path of SIMDRAM computation, which would cause large
performance overheads. To address such issues and to enable the
programmer/system to efficiently communicate with SIMDRAM,
we extend the ISA with specialized SIMDRAM instructions. The
main goal of the SIMDRAM ISA extensions is to let the SIMDRAM
control unit know (1) what SIMDRAM operations need to be per-
formed and when, and (2) what the SIMDRAM memory objects are
and when to transpose them.

Table 1 shows the CPU ISA extensions that the SIMDRAM frame-
work exposes to the programmer. There are three types of instruc-
tions: (1) SIMDRAM object initialization instructions, (2) instruc-
tions to perform different SIMDRAM operations, and (3) predication

9

instructions. We discuss bbop_trsp_init, our only SIMDRAM ob-
ject initialization instruction, in §5.1. The CPU ISA extensions for
performing SIMDRAM operations can be further divided into two
categories: (1) operations with one input operand (e.g., bitcount,
ReLU), and (2) operations with two input operands (e.g., addition,
division, equal, maximum). SIMDRAM uses an array-based com-
putation model, and src (i.e., src in 1-input operations and src_1,
src_2 in 2-input operations) and dst in these instructions repre-
sent source and destination arrays. bbop_op represents the opcode
of the SIMDRAM operation, while size and n represent the number
of elements in the source and destination arrays, and the number
of bits in each array element, respectively. To enable predication,
SIMDRAM uses the bbop_if_else instruction in which, in addi-
tion to two source and one destination arrays, select represents
the predicate array (i.e., the predicate, or mask, bits).

Table 1: SIMDRAM ISA extensions.
Type ISA Format

Initialization bbop_trsp_init address, size, n
1-Input Operation bbop_op dst, src, size, n
2-Input Operation bbop_op dst, src_1, src_2, size, n

Predication bbop_if_else dst, src_1, src_2, select, size, n

Listing 1 shows how SIMDRAM’s CPU ISA extensions can be
used to perform in-DRAM computation, with an example code that
performs element-wise addition or subtraction of two arrays (A
and B) depending on the comparison of each element of A to the
corresponding element of a third array (pred). Listing 1a shows
the original C code for the computation, while Listing 1b shows
the equivalent code using SIMDRAM operations. The lines that
perform the same operations are highlighted using the same colors
in both C code and SIMDRAM code. The if-then-else condition in
C code is performed in SIMDRAM using a predication instruction
(i.e., bbop_if_else on line 16 in Listing 1b). SIMDRAM treats the
if-then-else condition as a multiplexer. Accordingly, bbop_if_else
takes two source arrays and a predicate array as inputs, where the
predicate is used to choose which source array should be selected
as the output at the corresponding index. To this end, we first
allocate two arrays to hold the addition and subtraction results
(i.e., arrays D and E on line 10 in Listing 1b), and then populate
them using bbop_add and bbop_sub (lines 13 and 14 in Listing 1b),
respectively. We then allocate the predicate array (i.e., array F on
line 11 in Listing 1b) and populate it using bbop_greater (line 15
in Listing 1b). The addition, subtraction, and predicate arrays form
the three inputs (arrays D, E, F) to the bbop_if_else instruction
(line 16 in Listing 1b), which stores the outcome of the predicated
execution to the destination array (i.e., array C in Listing 1b).

In this work, we assume that the programmer manually rewrites
the code to use SIMDRAM operations. We follow this approach
when evaluating real-world applications in §7.3. We envision two
programming models for SIMDRAM. In the first programming
model, SIMDRAM operations are encapsulated within userspace li-
brary routines to ease programmability.With this approach, the pro-
grammer can optimize the SIMDRAM-based code to make the most
out of the underlying in-DRAM computing mechanism. In the sec-
ond programming model, SIMDRAM operations are transparently
inserted within the application’s binary using compiler assistance.
Since SIMDRAM is a SIMD-like compute engine, we expect that the

1 int size = 65536;

2 int elm_size = sizeof(uint8_t);

3 uint8_t *A, *B, *C = (uint8_t *) malloc(size*elm_size);

4 uint8_t *pred = (uint8_t *) malloc(size*elm_size);

5 ...

6 for(int i = 0; i < size; ++i) {

7 bool cond = A[i] > pred[i];

8 if (cond)

9 C[i] = A[i] + B[i];

10 else

11 C[i] = A[i] - B[i];

12 }

(a) C code for vector add/sub with predicated execution

1 int size = 65536;

2 int elm_size = sizeof(uint8_t);

3 uint8_t *A, *B, *C = (uint8_t *) malloc(size*elm_size);

4

5 bbop_trsp_init(A,size ,elm_size);

6 bbop_trsp_init(B,size ,elm_size);

7 bbop_trsp_init(C,size ,elm_size);

8 uint8_t *pred = (uint8_t *) malloc(size*elm_size);

9 // D, E, F store intermediate data

10 uint8_t *D, *E = (uint8_t *) malloc(size*elm_size);

11 bool *F = (bool*) malloc(size*sizeof(bool));

12 ...

13 bbop_add(D, A, B, size , elm_size);

14 bbop_sub(E, A, B, size , elm_size);

15 bbop_greater(F, A, pred , size , elm_size);

16 bbop_if_else(C, D, E, F, size , elm_size);

(b) Equivalent code using SIMDRAM operations
Listing 1: Example code using SIMDRAM instructions.

compiler can generate SIMDRAM code without programmer inter-
vention in at least two ways. First, it can leverage auto-vectorization
routines already present in modern compilers [34, 95] to generate
SIMDRAM code, by setting the width of the SIMD lanes equivalent
to a DRAM row. For example, in LLVM [78], the width of the SIMD
units can be defined using the "-force-vector-width" flag [95].
A SIMDRAM-based compiler back-end can convert the LLVM inter-
mediate representation instructions into bbop instructions. Second,
the compiler can compose groups of existing SIMD instructions
generated by the compiler (e.g., AVX2 instructions [32]) into blocks
that match the size of a DRAM row, and then convert such in-
structions into a single SIMDRAM operation. Prior work [2] uses
a similar approach for 3D-stacked PIM. We leave the design of a
compiler for SIMDRAM for future work.

SIMDRAM instructions can be implemented by extending the
ISA of the host CPU. This is possible since there is enough unused
opcode space to support the extra opcodes that SIMDRAM requires.
To illustrate, prior works [97, 98] show that there are 389 unused
operation codes considering only the AVX and SSE extensions for
the x86 ISA. Extending the instruction set is a common approach
to interface a CPU with PIM architectures [3, 131].

5.3 Handling Page Faults, Address Translation,
Coherence, and Interrupts

SIMDRAM handles four key system mechanisms as follows:
• Page Faults: We assume that the pages that are touched during
in-DRAM computation are already present and pinned in DRAM.
In case the required data is not present in DRAM, we rely on

10

the conventional page fault handling mechanism to bring the
required pages into DRAM.
• Address Translation: Virtual memory and address translation are
challenging for many PIM architectures [4, 44, 120]. SIMDRAM
is relieved of such challenge as it operates directly on physi-
cal addresses. When the CPU issues a SIMDRAM instruction,
the instruction’s virtual memory addresses are translated into
their corresponding physical addresses using the same transla-
tion lookaside buffer (TLB) lookup mechanisms used by regular
load/store operations.
• Coherence: Input arrays to SIMDRAM may be generated or mod-
ified by the CPU, and the data updates may reside only in the
cache (e.g., because the updates have not yet been written back to
DRAM). To ensure that SIMDRAM does not operate on stale data,
programmers are responsible for flushing cache lines [13, 61]
modified by the CPU. SIMDRAM can leverage coherence opti-
mizations tailored to PIM to improve overall performance [18, 19].
• Interrupts: Two cases where an interrupt could affect the execu-
tion of a SIMDRAM operation are (1) on an application context
switch, and (2) on a page fault. In case of a context switch, the
control unit’s context needs to be saved and then restored later
when the application resumes execution. We do not expect to
encounter a page fault during the execution of a SIMDRAMopera-
tion since, as previously mentioned, pages touched by SIMDRAM
operations are expected to be loaded into and pinned in DRAM.

5.4 Handling Limited Subarray Size
SIMDRAM operates on data placed within the same subarray.

However, a single subarray stores only several megabytes of data.
For example, a subarray with 1024 rows and a row size of 8 kB
can only store 8MB of data. Therefore, SIMDRAM needs to use a
mechanism that can efficiently move data within DRAM (e.g., across
DRAM banks and subarrays). SIMDRAM can exploit (1) RowClone
Pipelined Serial Mode (PSM) [130] to copy data between two banks
by using the internal DRAM bus, or (2) Low-Cost Inter-Linked
Subarrays (LISA) [21] to copy rows between two subarrays within
the same bank. We evaluate the performance overheads of using
both mechanisms in §7.6. Other mechanisms for fast in-DRAM data
movement [135, 148] can also enhance SIMDRAM’s capability.

5.5 Security Implications
SIMDRAMand other similar in-DRAM computationmechanisms

that use dedicated DRAM rows to perform computation may in-
crease vulnerability to RowHammer attacks [36, 68, 72, 103, 106].
We believe, and the literature suggests, that there should be robust
and scalable solutions to RowHammer, orthogonally to our work
(e.g., BlockHammer [150], PARA [71], TWiCe [86], Graphene [116]).
Exploring RowHammer prevention and mitigation mechanisms in
conjunction with SIMDRAM (or other PIM approaches) requires
special attention and research, which we leave for future work.

5.6 SIMDRAM Limitations
We note three key limitations of the current version of the SIM-

DRAM framework:
• Floating-Point Operations: SIMDRAM supports only integer and
fixed-point operations. Enabling floating-point operations in-
DRAM while maintaining low area overheads is a challenge.
For example, for floating-point addition, the IEEE 754 FP32 for-
mat [58] requires shifting the mantissa by the difference of the

exponents of elements. Since each bitline stores a data element
in SIMDRAM, shifting the value stored in one bitline without
compromising the values stored in other bitlines at low cost is
currently infeasible.
• Operations That Require Shuffling Data Across Bitlines: Different
from prior works (e.g., DRISA [91]), SIMDRAM does not add any
extra circuitry to perform bit-shift operations. Instead, SIMDRAM
stores data in a vertical layout and can perform explicit bit-shift
operations (if needed) by orchestrating row copies. Even though
this approach enables SIMDRAM to implement a large range of
operations, it is not possible to perform shuffling and reduction
operations across bitlines without the inclusion of dedicated bit-
shifting circuitry. This is due to the lack of physical connections
across bitlines, which can be solved by building a bit-shift engine
near the sense amplifiers.
• Synchronization Between Concurrent In-DRAM Operations: SIM-
DRAM can be easily modified to enable concurrent execution of
distinct operations across different subarrays in DRAM. However,
this would require the implementation of software or hardware
synchronization primitives to orchestrate the computation of a
single task across different subarrays. Ideas that are similar to
SynCron [45] can be beneficial.

6 Methodology
We implement SIMDRAM using the gem5 simulator [16] and

compare it to a real multicore CPU (Intel Skylake [60]), a real high-
end GPU (NVIDIA Titan V [112]), and a state-of-the-art processing-
using-DRAM mechanism (Ambit [131]). In all our evaluations, the
CPU code is optimized to leverage AVX-512 instructions [32]. Ta-
ble 2 shows the system parameters we use in our evaluations.
To measure CPU performance, we implement a set of timers in
sys/time.h [144]. To measure CPU energy consumption, we use
Intel RAPL [51]. To measure GPU performance, we implement a set
of timers using the cudaEvents API [22]. We capture GPU kernel
execution time that excludes data initialization/transfer time. To
measure GPU energy consumption, we use the nvml API [111]. We
report the average of five runs for each CPU/GPU data point, each
with a warmup phase to avoid cold cache effects. We implement
Ambit on gem5 and validate our implementation rigorously with
the results reported in [131]. We use the same vertical data layout
in our Ambit and SIMDRAM implementations, which enables us
to (1) evaluate all 16 SIMDRAM operations in Ambit using their
equivalent AND/OR/NOT-based implementations, and (2) highlight
the benefits of Step 1 in the SIMDRAM framework (i.e., using an
optimized MAJ/NOT-based implementation of the operations). Our
synthetic throughput analysis (§7.1) uses 64M-element input arrays.

Table 2: Evaluated system configurations.

Intel
Skylake CPU [60]

x86 [61], 16 cores, 8-wide, out-of-order, 4 GHz;
L1 Data + Inst. Private Cache: 32 kB, 8-way, 64 B line;
L2 Private Cache: 256 kB, 4-way, 64 B line;
L3 Shared Cache: 8MB, 16-way, 64 B line;
Main Memory: 32GB DDR4-2400, 4 channels, 4 ranks

NVIDIA
Titan V GPU [112]

6 graphics processing clusters, 5120 CUDA Cores;
80 streaming multiprocessors, 1.2 GHz base clock;
L2 Cache: 4.5MB L2 Cache; Main Memory: 12GB HBM [63, 82]

Ambit [131]
and SIMDRAM

gem5 system emulation; x86 [61], 1-core, out-of-order, 4 GHz;
L1 Data + Inst. Cache: 32 kB, 8-way, 64 B line;
L2 Cache: 256 kB, 4-way, 64 B line;
Memory Controller: 8 kB row size, FR-FCFS [107, 154] scheduling
Main Memory: DDR4-2400, 1 channel, 1 rank, 16 banks

11

We evaluate three different configurations of SIMDRAM where
1 (SIMDRAM:1), 4 (SIMDRAM:4), and 16 (SIMDRAM:16) banks out of
all the banks in one channel (16 banks in our evaluations) have SIM-
DRAM computation capability. In the SIMDRAM 1-bank configura-
tion, our mechanism exploits 65536 (i.e., size of an 8 kB row buffer)
SIMD lanes. Conventional DRAM architectures exploit bank-level
parallelism (BLP) to maximize DRAM throughput [73–75, 81, 108].
The memory controller can issue commands to different banks
(one-per-cycle) on the same channel such that banks can operate
in parallel. In SIMDRAM, banks in the same channel can operate
in parallel, just like conventional banks. Therefore, to enable the
required parallelism, SIMDRAM requires no more modifications.
Accordingly, the number of available SIMD lanes, i.e., SIMDRAM’s
computation capability, increases by exploiting BLP in SIMDRAM
configurations (i.e., the number of available SIMD lanes in the 16-
bank configuration is 16 × 65536).5

7 Evaluation
We demonstrate the advantages of the SIMDRAM framework

by evaluating: (1) SIMDRAM’s throughput and energy consump-
tion for a wide range of operations; (2) SIMDRAM’s performance
benefits on real-world applications; (3) SIMDRAM’s performance
and energy benefits over a closely-related processing-using-cache
architecture [38]; and (4) the reliability of SIMDRAM operations.
Finally, we evaluate three key overheads in SIMDRAM: in-DRAM
data movement, data transposition, and area cost.

7.1 Throughput Analysis
Fig. 9 (left) shows the normalized throughput of all 16 SIMDRAM

operations (§4.4) compared to those on CPU, GPU, and Ambit (nor-
malized to the multicore CPU throughput), for an element size of
32 bits. We provide the absolute throughput of the baseline CPU
(in GOps/s) in each graph. We classify each operation based on
how the latency of the operation scales with respect to element
size 𝑛.6 Class 1, 2, and 3 operations scale linearly, logarithmically,
and quadratically with 𝑛, respectively. Fig. 9 (right) shows how the
average throughput across all operations of the same class scales
relative to element size. We evaluate element sizes of 8, 16, 32, 64
bits. We normalize the figure to the average throughput on a CPU.

Titan V GPU Ambit SIMDRAM:1 SIMDRAM:4 SIMDRAM:16

CPU: 3.10.1
1

10
100

abs

Class 1

CPU: 3.2

addition

Class 1

CPU: 1.6

bitcount

Class 1

CPU: 3.3

equal

Class 1

CPU: 3.7

greater

Class 1

CPU: 3.7

greater_equal

Class 1

CPU: 1.2

if_else

Class 1

CPU: 2.4

max

Class 1

CPU: 2.20.1
1

10
100

min

Class 1

CPU: 3.1

ReLU

Class 1

CPU: 2.7

subtraction

Class 1

CPU: 2.3

and_red

Class 2

CPU: 2.1

or_red

Class 2

CPU: 2.1

xor_red

Class 2

CPU: 1.3

division

Class 3

CPU: 2.3

multiplication

Class 3N
or

m
al

ize
d

 T
hr

ou
gh

pu
t (

G
O

ps
/s

) −
−

lo
g

sc
al

e

Class 1: Linear

1

10

100

Class 2: Logarithmic

1
10

100

Class 3: Quadratic

8 16 32 64
0.01

0.1
1

10

Element Size

Av
er

ag
e

N
or

m
al

ize
d

 T
hr

ou
gh

pu
t (

G
O

ps
/s

) −
−

lo
g

sc
al

e

Figure 9: Normalized throughput of 16 operations. SIM-
DRAM:X uses X DRAM banks for computation.

We make four observations from Fig. 9. First, we observe that
SIMDRAM outperforms the three state-of-the-art baseline sys-
tems i.e., CPU/GPU/Ambit. Compared to CPU/GPU, SIMDRAM’s
throughput is 5.5×/0.4×, 22.0×/1.5×, and 88.0×/5.8× that of the
CPU/GPU, averaged across all 16 SIMDRAM operations for 1, 4,
5SIMDRAM computation capability can be further increased by enabling and exploiting
subarray-level parallelism in each bank [20, 21, 65, 74].
6Appendix C discusses the scalability of each operation.

and 16 banks, respectively. To ensure fairness, we compare Ambit,
which uses a single DRAM bank in our evaluations, only against
SIMDRAM:1.7 Our evaluations show that SIMDRAM:1 outperforms
Ambit by 2.0×, averaged across all 16 SIMDRAM operations. Sec-
ond, SIMDRAM outperforms the GPU baseline when we use more
than four DRAM banks for all the linear and logarithmic oper-
ations. SIMDRAM:16 provides 5.7× (9.3×) the throughput of the
GPU across all linear (logarithmic) operations, on average. SIM-
DRAM:16’s throughput is 83× (189×) and 45.2× (19.9×) that of CPU
and Ambit, respectively, averaged across all linear (logarithmic)
operations. Third, we observe that both the multicore CPU baseline
and GPU outperform SIMDRAM:1, SIMDRAM:4, and SIMDRAM:16
only for the division and multiplication operations. This is due to
the quadratic nature of our bit-serial implementation of these two
operations. Fourth, as expected, we observe a drop in the through-
put for all operations with increasing element size, since the latency
of each operation increases with element size. We conclude that
SIMDRAM significantly outperforms all three state-of-the-art base-
lines for a wide range of operations.

7.2 Energy Analysis
We use CACTI [102] to evaluate SIMDRAM’s energy consump-

tion. Prior work [131] shows that each additional simultaneous row
activation increases energy consumption by 22%. We use this obser-
vation in evaluating the energy consumption of SIMDRAM, which
requires TRAs. Fig. 10 compares the energy efficiency (Through-
put per Watt) of SIMDRAM against the GPU and Ambit baselines,
normalized to the CPU baseline. We provide the absolute Through-
put per Watt of the baseline CPU in each graph. We make four
observations. First, SIMDRAM significantly increases energy ef-
ficiency for all operations over all three baselines. SIMDRAM’s
energy efficiency is 257×, 31×, and 2.6× that of CPU, GPU, and
Ambit, respectively, averaged across all 16 operations. The energy
savings in SIMDRAM directly result from (1) avoiding the costly
off-chip round-trips to load/store data from/to memory, (2) exploit-
ing the abundant memory bandwidth within the memory device,
reducing execution time, and (3) reducing the number of TRAs
required to compute a given operation by leveraging an optimized
majority-based implementation of the operation. Second, similar
to our results on throughput (§7.1), the energy efficiency of SIM-
DRAM reduces as element size increases. However, the energy
efficiency of the CPU or GPU does not. This is because (1) for all
SIMDRAM operations, the number of TRAs increases with element
size; and (2) CPU and GPU can fully utilize their wider arithmetic
units with larger (i.e., 32- and 64-bit) element sizes. Third, even
though SIMDRAM multiplication and division operations scale
poorly with element size, the SIMDRAM implementations of these
operations are significantly more energy-efficient compared to the
CPU and GPU baselines, making SIMDRAM a competitive candi-
date even for multiplication and division operations. Fourth, since
both SIMDRAM’s throughput and power consumption increase
proportionally to the number of banks, the Throughput per Watt
for SIMDRAM 1-, 4-, and 16-bank configurations is the same. We
conclude that SIMDRAM is more energy-efficient than all three
state-of-the-art baselines for a wide range of operations.

7Ambit’s throughput scales proportionally to bank count, just like SIMDRAM’s.

12

Titan V GPU Ambit SIMDRAM:1 SIMDRAM:4 SIMDRAM:16

CPU: 0.31

1

10

100

1000

abs

Class 1
CPU: 0.26

addition

Class 1
CPU: 0.16

bitcount

Class 1
CPU: 0.28

equal

Class 1
CPU: 0.31

greater

Class 1
CPU: 0.31

greater_equal

Class 1
CPU: 0.10

if_else

Class 1
CPU: 0.19

max

Class 1

CPU: 0.19

1

10

100

1000

min

Class 1
CPU: 0.23

ReLU

Class 1
CPU: 0.22

subtraction

Class 1
CPU: 0.24

and_red

Class 2
CPU: 0.22

or_red

Class 2
CPU: 0.45

xor_red

Class 2
CPU: 0.10

division

Class 3
CPU: 0.20

multiplication

Class 3

N
or

m
al

ize
d

 T
hr

ou
gh

pu
t p

er
 W

at
t −
−

lo
g

sc
al

e

Class 1: Linear

1
10

100
1000

Class 2: Logarithmic

1
10

100
1000

Class 3: Quadratic

8 16 32 64
1

10
100

Element Size

Av
er

ag
e

N
or

m
al

ize
d

 T
hr

ou
gh

pu
t p

er
 W

at
t −
−

lo
g

sc
al

e

Figure 10: Normalized energy efficiency of 16 operations.

7.3 Effect on Real-World Kernels
We evaluate SIMDRAM with a set of kernels that represent the

behavior of selected important real-world applications from differ-
ent domains. The evaluated kernels come from databases (TPC-H
query 1 [145], BitWeaving [93]), convolutional neural networks
(LeNET-5 [79], VGG-13 [138], VGG-16 [138]), classification algo-
rithms (k-nearest neighbors [88]), and image processing (bright-
ness [47]). These kernels rely on many of the basic operations we
evaluate in §7.1. We provide a brief description of each kernel and
the SIMDRAM operations it utilizes in Appendix D.

Fig. 11 shows the performance of SIMDRAM and our baseline
configurations for each kernel, normalized to that of the multi-
core CPU. We make four observations. First, SIMDRAM:16 greatly
outperforms the CPU and GPU baselines, providing 21× and 2.1×
the performance of the CPU and GPU, respectively, on average
across all seven kernels. SIMDRAM has a maximum performance
of 65× and 5.4× that of the CPU and GPU, respectively (for the
BitWeaving kernel in both cases). Similarly, SIMDRAM:1 provides
2.5× the performance of Ambit (which also uses a single bank for
in-DRAM computation), on average across all seven kernels, with
a maximum of 4.8× the performance of Ambit for the TPC-H ker-
nel. Second, even with a single DRAM bank, SIMDRAM always
outperforms the CPU baseline, providing 2.9× the performance of
the CPU on average across all kernels. Third, SIMDRAM:4 provides
2× and 1.1× the performance of the GPU baseline for the BitWeav-
ing and brightness kernels, respectively. Fourth, despite GPU’s
higher multiplication throughput compared to SIMDRAM (§7.1),
SIMDRAM:16 outperforms the GPU baseline even for kernels that
heavily rely on multiplication (Appendix D) (e.g., by 1.03× and 2.5×
for kNN and TPC-H kernels, respectively). This speedup is a direct
result of exploiting the high in-DRAM bandwidth in SIMDRAM to
avoid the memory bottleneck in GPU caused by the large amounts
of intermediate data generated in such kernels. We conclude that
SIMDRAM is an effective and efficient substrate to accelerate many
commonly-used real-world applications.

24 65 16 40 18 31 50 21

0
3
6
9

12
15

BitWeaving TPC−H kNN LeNET VGG−13 VGG−16 brightness GMeanN
or

m
al

ize
d

Sp
ee

du
p

 o
ve

r C
PU

Titan V Ambit SIMDRAM:1 SIMDRAM:4 SIMDRAM:16

Figure 11: Normalized speedup of real-world kernels.

7.4 Comparison to DualityCache
We compare SIMDRAM to DualityCache [38], a closely-related

processing-using-cache architecture. DualityCache is an in-cache
computing framework that performs computation using discrete

logic elements (e.g., logic gates, latches, muxes) that are added to the
SRAM peripheral circuitry. In-cache computing approaches (such
as DualityCache) need data to be brought into the cache first, which
requires extra data movement (and even more if the working set of
the application does not fit in the cache) compared to in-memory
computing approaches (like SIMDRAM).

Fig. 12 (top) compares the latency of SIMDRAM against Dual-
ityCache [38] for the subset of operations that both SIMDRAM
and DualityCache support (i.e., addition, subtraction, multiplica-
tion, and division). In this experiment, we study three different
configurations. First, DualityCache:Ideal has all data required for
DualityCache residing in the cache. Therefore, results for Dual-
ityCache:Ideal do not include the overhead of moving data from
DRAM to the cache, making it an unrealistic configuration that
needs the data to already reside and fit in the cache. Second, Du-
alityCache:Realistic includes the overhead of data movement from
DRAM to the cache. Both DualityCache configurations compute
on an input array of 45MB. Third, SIMDRAM:16. For all three con-
figurations, we use the same cache size (35MB) as the original
DualityCache work [38] to provide a fair comparison. As shown in
the figure, SIMDRAM greatly outperforms DualityCache when data
movement is realistically taken into account. SIMDRAM:16 outper-
forms DualityCache:Realistic for all four operations (by 52.9×, 52.4×,
1.8×, and 2.1× for addition, subtraction, multiplication, and divi-
sion respectively, on average across all element sizes). SIMDRAM’s
performance improvement comes at a much lower area overhead
compared to DualityCache. DualityCache (including its peripherals,
transpose memory unit, controller, miss status holding registers,
and crossbar network) has an area overhead of 3.5% in a high-end
CPU, whereas SIMDRAM has an area overhead of only 0.2% (§7.8).
As a result, SIMDRAM can actually fit a significantly higher number
of SIMD lanes in a given area compared to DualityCache. There-
fore, SIMDRAM’s performance improvement per unit area would
be much larger than that we observe in Fig. 12. We conclude that
SIMDRAM achieves higher performance at lower area cost over
DualityCache, when we consider DRAM-to-cache data movement.

DualityCache:Ideal DualityCache:Realistic SIMDRAM:16
addition subtraction multiplication division

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
1 × 1001 × 1021 × 1041 × 1061 × 108

La
te

nc
y

(n
s)

 lo

g
sc

al
e

addition subtraction multiplication division

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
1 × 100
1 × 103
1 × 106
1 × 109

Element Size

En
er

gy
 (p

J)

 lo
g

sc
al

e

Figure 12: Latency and energy to execute 64M operations.

Fig. 12 (bottom) shows the energy consumption of Duality-
Cache:Realistic, DualityCache:Ideal, and SIMDRAM:16 when per-
forming 64M addition, subtraction, multiplication, and division
operations. We make two observations. First, compared to Duality-
Cache:Ideal, SIMDRAM:16 increases average energy consumption
by 60%. This is because while the energy per bit to perform compu-
tation in DRAM (13.3 nJ/bit [101, 147]) is smaller than the energy
per bit to perform computation in the cache (60.1 nJ/bit [29]), the
DualityCache implementation of each operation requires fewer

13

iterations than its equivalent SIMDRAM implementation. Sec-
ond, SIMDRAM:16 reduces average energy by 600× over Duali-
tyCache:Realistic because DualityCache:Realistic needs to load all
input data from DRAM, incurring high energy overhead (a DRAM
access consumes 650× the energy-per-bit of a DualityCache opera-
tion [29, 38]). In contrast, SIMDRAMoperates on data that is already
present in DRAM, eliminating any data movement overhead. We
conclude that SIMDRAM is much more efficient than DualityCache,
when cache-to-DRAM data movement is realistically considered.

7.5 Reliability
We use SPICE simulations to test the reliability of SIMDRAM for

different technology nodes and varying amounts of process varia-
tion. At the core of SIMDRAM, there are two back-to-back triple-
row activations (TRAs). Table 3 shows the characteristics of TRA
and two back-to-back TRAs (TRAb2b) for the 45, 32, and 22 nm tech-
nology nodes. We compare these with the reliability of quintuple-
row activations (QRAs), used by prior works [6, 9] to implement
bit-serial addition. We use the reference 55 nm DRAM model from
Rambus [123] and scale it based on the ITRS roadmap [62, 147]
to model smaller technology nodes following the PTM transistor
models [110]. The goal of our analysis is to understand the reliabil-
ity trends for TRA and QRA operations with technology scaling.
For each technology node and process variation amount, we run
Monte-Carlo simulations for 104 iterations.
Table 3: Process variation’s effect on TRA/QRA failure rates.

Variation (%) ± 0 ± 5 ± 10 ± 20

45 nm
TRA Failure (%) 0 0 0.02 3.01

TRAb2b Failure (%) 0 0 0.04 5.93
QRA Failure (%) 0 0 0.35 6.54

32 nm
TRA Failure (%) 0 0 0.35 3.90

TRAb2b Failure (%) 0 0 0.69 7.64
QRA Failure (%) 0 0.42 6.33 11.52

22 nm
TRA Failure (%) 0 0 0.42 4.50

TRAb2b Failure (%) 0 0 0.84 8.83
QRA Failure (%) error error error error

Wemake four observations. First, for all process variation ranges,
TRA and TRAb2b perform more reliably than QRA. Specifically,
TRA and TRAb2b perform without errors for 5% variation. Second,
while moving from 45 nm to 32 nm, we observe that the error rate
of QRA increases faster than than that of TRA, making QRA less
reliable as the technology node size reduces. Third, for TRA and
TRAb2b in 22 nm, we observe a similar trend of increased error
rate while still having zero error rate for 5% process variation. In
our simulations, QRA does not perform correctly in the projected
22 nm DRAM. For example, MAJ(11100) always leads to the incor-
rect outcome of ‘0’. This is because charge sharing between five
capacitors in QRA does not lead to enough voltage on the bitline
for the sense amplifier to pull up the bitline to the value ‘1’. We
believe that proposals based on QRA require changes to the circuit
elements (e.g., transistors in the sense amplifier) to enable correct
operation in the 22 nm technology node. Fourth, a TRA can fail
depending on the amount of manufacturing process variation. We
observe that a TRA starts to fail when process variation is larger
than 10%, for all technology nodes. Since SIMDRAM operations
are executed within a DRAM module, it is quite challenging to
leverage existing in-DRAM or in-memory-controller error correc-
tion mechanisms [99, 100, 117, 118]. The same problem exists for

other processing-using-DRAMmechanisms [6, 9, 25, 27, 90, 91, 129–
134, 143, 149]. We conclude that the TRA operations SIMDRAM
relies on are much more scalable and variation-tolerant than QRA
operations some prior works rely on. We leave a study of reliability
solutions for future work.

7.6 Data Movement Overhead
There may be cases where the output of a SIMDRAM operation

that is used as an input to a subsequent operation does not reside in
the same subarray as other inputs. For example, consider the com-
putation 𝐶 = 𝑂𝑃 (𝐴, 𝐵). If the output of the SIMDRAM operation
𝑂𝑃 is an input to a subsequent SIMDRAM operation, 𝐶 needs to
move to the same subarray as the other inputs of the subsequent
operation, before the operation can start. Fig. 13 shows the distri-
bution of the worst-case latency overhead of moving the output of
each of our 16 SIMDRAM operations with 8-, 16-, 32-, and 64-bit
element sizes in SIMDRAM:1 to a different subarray within the same
bank, i.e., intra-bank (using LISA [21]) or a different bank, i.e., inter-
bank (using RowClone PSM [130]). We make two observations.
First, intra-bank data movement (Fig. 13, left) results in only 0.39%
latency overhead, averaged across all 16 SIMDRAM operations and
four different element sizes (max. 1.52% for 8-bit reduction, min.
0.001% for 64-bit multiplication). Second, inter-bank data movement
(Fig. 13, right) results in 17.5% latency overhead, averaged across
all 16 SIMDRAM operations and four different element sizes (max.
68.7% for 8-bit reduction, min. 0.03% for 64-bit multiplication). We
observe that the latency overhead of moving data, as a fraction of
the total computation latency decreases with element size, because
the computation latency of each SIMDRAM operation increases
with element size. We conclude that while efficient data movement
is a challenge in processing-in-memory architectures that rely on
moving and aligning operands, the performance overhead of data
movement in SIMDRAM stays within an acceptable range even
under worst-case assumptions.

intra−bank

0.0%

0.4%

0.8%

1.2%

1.6%

8 16 32 64
Element Size

LI
SA

 L

at
en

cy
 O

ve
rh

ea
d

(%
)

inter−bank

0%

20%

40%

60%

80%

8 16 32 64
Element Size

 R
ow

C
lo

ne
 P

SM

 L
at

en
cy

 O
ve

rh
ea

d
(%

)

Figure 13: Latency overhead distribution of worst-case intra-
bank (left) and inter-bank (right) data movement for SIM-
DRAM:1. Error bars depict the 25th and 75th percentiles.

7.7 Data Transposition Overhead
Transposition of the data in one subarray can overlap with in-

DRAM computation in another subarray. As a result, if the data
required for in-DRAM computation spans over multiple subarrays,
only the transposition of the data in the first subarray is on the
critical path of SIMDRAM execution. The data in each remaining
subarray is then transposed simultaneously with the in-DRAM
computation in the previous subarray.

To better understand the overhead of transposing data, we eval-
uate the worst-case latency of data transposition, which is when
SIMDRAM’s data initially resides in the cache in a horizontal layout.
Before the computation of the SIMDRAM operation can start, this

14

data needs to be transposed to a vertical layout and transferred to
DRAM, incurring additional latency. Fig. 14 shows this worst-case
data transposition latency and the distribution of latency overhead
of data transposition in SIMDRAM:1 across all 16 SIMDRAM opera-
tions, as a function of element size. We make three observations.
First, in SIMDRAM:1 (SIMDRAM:16), data transposition incurs 7.1%
(44.6%) latency overhead across all SIMDRAM operations (min.
0.03% (0.55%) for 64-bit multiplication, max. 38.9% (91.1%) for 8-bit
AND-reduction and OR-reduction). As shown in §7.1, for all the
evaluated element sizes, SIMDRAM:1 (SIMDRAM:16) outperforms
the CPU and GPU baselines by 5.5× and 0.4× (88.0× and 5.8×)
on average across all 16 SIMDRAM operations, respectively. Even
when we include the data transposition overhead, SIMDRAM:1 (SIM-
DRAM:16) still outperforms both the CPU and GPU baselines by
4.0× and 0.24× (20.0× and 1.4×) on average across all 16 SIMDRAM
operations. Our analysis for kernels that represent the behavior of
real-world applications (§7.3) already includes the data transposi-
tion overhead. Second, the data transposition latency significantly
increases with element size (by 9.7× from 8-bit elements to 64-bit
elements). The number of cache lines that need to be transposed
increases linearly with element size, which, in turn, increases the
total transposition latency. Third, even though the transposition
latency increases with element size, the transposition overhead as a
fraction of the total latency decreases with element size, because the
latency of each SIMDRAM operation also increases with element
size. Since the transposition of data in each subarray is overlapped
with the computation in another subarray, the increase in trans-
position latency is amortized over an even higher increase in the
SIMDRAM operation latency. We conclude that SIMDRAM can
efficiently perform in-DRAM computation even when worst-case
data transposition overhead is taken into account.

0

50

100

150

200

8 16 32 64
Element Size

Tr
an

sp
os

iti
on

 L

at
en

cy
 (n

s)

0%

10%

20%

30%

40%

8 16 32 64
Element Size

Tr
an

po
si

tio
n

 L
at

en
cy

 O
ve

rh
ea

d
(%

)

Figure 14: Worst-case latency (left) and worst-case latency
overhead distribution (right) of data transposition in 16 SIM-
DRAM operations for SIMDRAM:1. Error bars depict the
25th and 75th percentiles, and a bubble depicts the 50th per-
centile.

7.8 Area Overhead
We use CACTI [102] to evaluate the area overhead of the primary

components in the SIMDRAM design using a 22 nm technology
node. SIMDRAM does not introduce any modifications to DRAM
circuitry other than those proposed by Ambit, which has an area
overhead of <1% in a commodity DRAM chip [131]. Therefore,
SIMDRAM’s area overhead over Ambit is only two structures in
the memory controller: the control and transposition units.

Control Unit Area Overhead. The main components in the
SIMDRAM control unit are the (1) bbop FIFO, (2) µProgram Scratch-
pad, (3) µOp Memory. We size the bbop FIFO and µProgram Scratch-
pad to 2 kB each. The size of the bbop FIFO is enough to hold up to
1024 bbop instructions, which we observe is more than enough for

our real-world applications. The size of the µProgram Scratchpad
is large enough to store the µPrograms for all 16 SIMDRAM opera-
tions that we evaluate in the paper (16 µPrograms × 128 B max per
µProgram). We use a 128 B scratchpad for the µOp Memory.2 We
estimate that the SIMDRAM control unit area is 0.04mm2.

Transposition Unit Area Overhead. The primary compo-
nents in the transposition unit are (1) the Object Tracker and (2) two
transposition buffers. We use an 8 kB fully-associative cache with
a 64-bit cache line size for the Object Tracker. This is enough to
store 1024 entries in the Object Tracker, where each entry holds
the base physical address of a SIMDRAM object (19 bits), the total
size of the allocated data (32 bits), and the size of each element in
the object (6 bits). Each transposition buffer is 4 kB, to transpose
up to a 64-bit SIMDRAM object (64-bit × 64 B). We estimate the
transposition unit area is 0.06mm2. Considering the area of the
control and transposition units, SIMDRAM has an area overhead
of only 0.2% compared to the die area of an Intel Xeon E5-2697 v3
CPU [38]. We conclude that SIMDRAM has low area cost.

8 Related Work
To our knowledge, SIMDRAM is the first end-to-end framework

that supports in-DRAM computation flexibly and transparently to
the user. We highlight SIMDRAM’s key contributions by contrast-
ing it with state-of-the-art processing-in-memory designs.
Processing-near-Memory (PnM) within 3D-Stacked Memo-
ries. Many recent works (e.g., [3, 4, 17–19, 26, 28, 30, 31, 41, 42, 45,
46, 50, 55, 56, 66, 70, 89, 96, 109, 113, 120, 125–127, 152]) explore
adding logic directly to the logic layer of 3D-stacked memories (e.g.,
High-Bandwidth Memory [63, 82], Hybrid Memory Cube [57]). The
implementation of SIMDRAM is considerably simpler, and relies
on minimal modifications to commodity DRAM chips.
Processing-using-Memory (PuM). Prior works propose mech-
anisms wherein the memory arrays themselves perform various
operations in bulk [6, 9, 25, 27, 90, 91, 129–134, 143, 149]. SIM-
DRAM supports a much wider range of operations (compared to
[6, 9, 25, 90, 91, 130, 131, 149]), at lower computational cost (com-
pared to [131, 149]), at lower area overhead (compared to [91]), and
with more reliable execution (compared to [6, 9]).
Processing-in-Cache. Recent works [1, 29, 38] propose in-SRAM
accelerators that take advantage of the SRAM bitline structures to
perform bit-serial computation in caches. SIMDRAM shares simi-
larities with these approaches, but offers a significantly lower cost
per bit by exploiting the high density and low cost of DRAM tech-
nology. We show the large performance and energy advantages of
SIMDRAM compared to DualityCache [38] in §7.4.
Frameworks for PIM. Few prior works tackle the challenge of pro-
viding end-to-end support for PIM. We describe these frameworks
and their limitations for in-DRAM computing. DualityCache [38]
is an end-to-end framework for in-cache computing. DualityCache
utilizes the CUDA/OpenAcc programming languages [22, 115] to
generate code for an in-cache mechanism that executes a fixed set
of operations in a single-instruction multiple-thread (SIMT) man-
ner. Like SIMDRAM, DualityCache stores data in a vertical layout
through the bitlines of the SRAM array. It treats each bitline as
an independent execution thread and utilizes a crossbar network
to allow inter-thread communication across bitlines. Despite its
benefits, employing DualityCache in DRAM is not straightforward

15

for two reasons. First, extending the DRAM subarray with the
crossbar network utilized by DualityCache in SRAM to allow inter-
thread communication would impose a prohibitive area overhead in
DRAM (9× the DRAM subarray area). Second, as an in-cache com-
puting solution, DualityCache does not account for the limitations
of in-DRAM computing, i.e., DRAM operations that destroy input
data, limited number of DRAM rows that are capable of processing-
using-DRAM, and the need to avoid costly in-DRAM copies. We
have already shown that SIMDRAM achieves higher performance
at lower area overhead than DualityCache, when DRAM-to-cache
data movement is realistically taken into account (§7.4).

Two prior works propose frameworks targeting ReRAM de-
vices. Hyper-AP [151] is a framework for associative processing
using ReRAM. Since Hyper-AP targets associative processing, the
proposed framework is fundamentally different from SIMDRAM.
IMP [37] is a framework for in-situ ReRAM operations. Like Du-
alityCache, the IMP framework depends on particular structures
of the ReRAM array (such as analog-to-digital/digital-to-analog
converters) to perform computation and, thus, is not applicable to
an in-DRAM substrate that performs bulk bitwise operations. More-
over, DualityCache, Hyper-AP, and IMP each have a rigid ISA that
enables only a limited set of in-memory operations (DualityCache
supports 16 in-memory operations, while both Hyper-AP and IMP
support 12). In contrast, SIMDRAM is the first framework for PuM
that is flexible, providing a methodology that allows new operations
to be integrated and computed in memory as needed. In summary,
SIMDRAM fills the gap for a flexible end-to-end framework that
targets processing-using-DRAM.

9 Conclusion
We introduce SIMDRAM, a massively-parallel general-purpose

processing-using-DRAM framework that (1) enables the efficient
implementation of a wide variety of operations in DRAM, in SIMD
fashion, and (2) provides a flexible mechanism to support the im-
plementation of arbitrary user-defined operations. SIMDRAM in-
troduces a new three-step framework to enable efficient MAJ/NOT-
based in-DRAM implementation for complex operations of different
categories (e.g., arithmetic, relational, predication), and is applicable
to a wide range of real-world applications. We design the hardware
and ISA support for SIMDRAM framework to (1) address key system
integration challenges, and (2) allow programmers to employ new
SIMDRAM operations without hardware changes. We experimen-
tally demonstrate that SIMDRAM provides significant performance
and energy benefits over state-of-the-art CPU, GPU, and PuM sys-
tems. We hope that future work builds on our framework to further
ease the adoption and improve the performance and efficiency of
processing-using-DRAM architectures and applications.

Acknowledgments
We thank our shepherd Thomas Wenisch and the anonymous

reviewers of MICRO 2020 and ASPLOS 2021 for their feedback. We
thank the SAFARI Research Group members for valuable feedback
and the stimulating intellectual environment they provide. We
acknowledge the generous gifts of our industrial partners, especially
Google, Huawei, Intel, Microsoft, and VMware. This research was
partially supported by the Semiconductor Research Corporation.

References
[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das,

“Compute Caches,” in HPCA, 2017.
[2] H. Ahmed, P. C. Santos, J. P. C. Lima, R. F. Moura, M. A. Z. Alves, A. C. S. Beck,

and L. Carro, “A Compiler for Automatic Selection of Suitable Processing-in-
Memory Instructions,” in DATE, 2019.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing,” in ISCA, 2015.

[4] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

[5] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory Using
3D-Stacked DRAM,” in ISCA, 2016.

[6] M. F. Ali, A. Jaiswal, and K. Roy, “In-Memory Low-Cost Bit-Serial Addition
Using Commodity DRAM Technology,” in TCAS-I, 2019.

[7] L. Amaru, P.-E. Gaillardon, and G. Micheli, “Majority-Inverter Graph: A Novel
Data-Structure and Algorithms for Efficient Logic Optimization,” in DAC, 2014.

[8] S. Angizi, N. A. Fahmi, W. Zhang, and D. Fan, “PIM-Assembler: A Processing-in-
Memory Platform for Genome Assembly,” in DAC, 2020.

[9] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator Leveraging
in-DRAM-Computing,” in GLSVLSI, 2019.

[10] S. Angizi and D. Fan, “ReDRAM: A Reconfigurable Processing-in-DRAM Plat-
form for Accelerating Bulk Bit-Wise Operations,” in ICCAD, 2019.

[11] S. Angizi, Z. He, and D. Fan, “DIMA: A Depthwise CNN In-Memory Accelerator,”
in ICCAD, 2018.

[12] S. Angizi, Z. He, F. Parveen, and D. Fan, “IMCE: Energy-Efficient Bitwise In-
Memory Convolution Engine for Deep Neural Network,” in ASP-DAC, 2018.

[13] ARM Ltd., Cortex-A8 Technical Reference Manual, 2010.
[14] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for Databases,” in

SIGMOD, 2015.
[15] K. E. Batcher, “Bit-Serial Parallel Processing Systems,” in TC, 1982.
[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “The gem5 Simulator,” Comput. Archit. News, 2011.

[17] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for
Consumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[18] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and O. Mutlu,
“LazyPIM: An Efficient Cache CoherenceMechanism for Processing-in-Memory,”
CAL, 2017.

[19] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarungnirun,
K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng, and O. Mutlu, “CoNDA: Efficient
Cache Coherence Support for Near-Data Accelerators,” in ISCA, 2019.

[20] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Ac-
cesses,” in HPCA, 2014.

[21] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in
DRAM,” in HPCA, 2016.

[22] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Programming.
John Wiley & Sons, 2014.

[23] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A
Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory,” in ISCA, 2016.

[24] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learn-
ing Research [Best of the Web],” IEEE Signal Processing Magazine, 2012.

[25] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: A DRAM Based
Accelerator for Accurate CNN Inference,” in DAC, 2018.

[26] F. Devaux, “The True Processing in Memory Accelerator,” in HCS, 2019.
[27] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes, “An Effi-

cient and Scalable Semiconductor Architecture for Parallel Automata Processing,”
TPDS, 2014.

[28] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot,
and D. Pnevmatikatos, “The Mondrian Data Engine,” in ISCA, 2017.

[29] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw,
and R. Das, “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural
Networks,” in ISCA, 2018.

[30] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM
Acceleration Architecture Leveraging Commodity DRAM Devices and Standard
Memory Modules,” in HPCA, 2015.

[31] I. Fernandez, R. Quislant, E. Gutiérrez, O. Plata, C. Giannoula, M. Alser, J. Gómez-
Luna, and O. Mutlu, “NATSA: A Near-Data Processing Accelerator for Time
Series Analysis,” in ICCD, 2020.

[32] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel AVX: New Frontiers
in Performance Improvements and Energy Efficiency,” Intel Corp., 2008, white
paper.

[33] J. D. Foley, F. D. Van, A. Van Dam, S. K. Feiner, J. F. Hughes, E. Angel, and
J. Hughes, Computer Graphics: Principles and Practice, 1996.

16

[34] Free Software Foundation, “GNU Project: Auto-Vectorization in GCC,” https:
//gcc.gnu.org/projects/tree-ssa/vectorization.html.

[35] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning
(2nd Edition). Springer-Verlag, 2008.

[36] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos,
and K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,”
in IEEE S&P, 2020.

[37] D. Fujiki, S. Mahlke, and R. Das, “In-Memory Data Parallel Processor,” inASPLOS,
2018.

[38] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel Acceleration,”
in ISCA, 2019.

[39] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay,
and G. De Micheli, “The Programmable Logic-in-Memory (PLiM) Computer,” in
DATE, 2016.

[40] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Com-
pute Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[41] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable Logic for
Near-Data Processing,” in HPCA, 2016.

[42] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable and
Efficient Neural Network Acceleration with 3D Memory,” in ASPLOS, 2017.

[43] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu, “Processing-
in-Memory: A Workload-Driven Perspective,” IBM JRD, 2019.

[44] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu, “The
Processing-in-Memory Paradigm: Mechanisms to Enable Adoption,” in Beyond-
CMOS Technologies for Next Generation Computer Design. Springer, 2019,
preprint available at arXiv:1802.00320 [cs.AR].

[45] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas, I. Fernandez,
J. Gómez-Luna, L. Orosa, N. Koziris, G. Goumas, and O. Mutlu, “SynCron: Ef-
ficient Synchronization Support for Near-Data-Processing Architectures,” in
HPCA, 2021.

[46] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The Terasys
Massively Parallel PIM Array,” Computer, 1995.

[47] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. Addison-
Wesley, 2002.

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[49] P. Gu, S. Li, D. Stow, R. Barnes, L. Liu, Y. Xie, and E. Kursun, “Leveraging 3D

Technologies for Hardware Security: Opportunities and Challenges,” in GLSVLSI,
2016.

[50] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “iPIM: Pro-
grammable In-Memory Image Processing Accelerator Using Near-Bank Archi-
tecture,” in ISCA, 2020.

[51] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring Energy Consumption
for Short Code Paths Using RAPL,” SIGMETRICS, 2012.

[52] Z. He, L. Yang, S. Angizi, A. S. Rakin, and D. Fan, “Sparse BD-Net: A
Multiplication-Less DNN with Sparse Binarized Depth-Wise Separable Convo-
lution,” JETC, 2020.

[53] W. D. Hillis and L. W. Tucker, “The CM-5 Connection Machine: A Scalable
Supercomputer,” CACM, 1993.

[54] W. D. Hillis, “The Connection Machine,” Ph.D. dissertation, Massachusetts Inst.
of Technology, 1988.

[55] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping (TOM)
Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” in
ISCA, 2016.

[56] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation,” in ICCD, 2016.

[57] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification Rev.
2.1,” 2014.

[58] IEEE, “IEEE Standard for Floating-Point Arithmetic,” Standard 754-2019, 2019.
[59] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory Acceleration

of Deep Neural Network Training with High Precision,” in ISCA, 2019.
[60] Intel Corp., “6th Generation Intel Core Processor Family Datasheet,” http://www.

intel.com/content/www/us/en/processors/core/.
[61] Intel Corp., Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol. 3,

2016.
[62] International Technology Roadmap for Semiconductors, “ITRS Reports,” http:

//www.itrs2.net/itrs-reports.html, 2015.
[63] JEDEC Solid State Technology Assn., “JESD235C: High Bandwidth Memory

(HBM) DRAM,” January 2020.
[64] B. A. Kahle and W. D. Hillis, “The Connection Machine Model CM-1 Architec-

ture,” Thinking Machines Corp., Tech. Rep., 1989.
[65] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. S. Choi,

“Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling,” in
The Memory Forum, 2014.

[66] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube:
A Programmable Digital Neuromorphic Architecture with High-Density 3D
Memory,” in ISCA, 2016.

[67] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing DRAM
Access Latency by Exploiting the Variation in Local Bitlines,” in ICCD, 2018.

[68] J. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu,
“Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices
and Mitigation Techniques,” in ISCA, 2020.

[69] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Com-
modity DRAM Devices to Generate True Random Numbers with Low Latency
and High Throughput,” in HPCA, 2019.

[70] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin,
C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Filtering in DNA Read
Mapping Using Processing-in-Memory Technologies,” in APBC, 2018.

[71] Y. Kim, R. Daly, J. Kim, C. Fallin, j. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“RowHammer: Reliability Analysis and Security Implications,” in ISCA, 2014.

[72] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[73] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

[74] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Exploiting Subarray-
Level Parallelism (SALP) in DRAM,” in ISCA, 2012.

[75] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM
Simulator,” CAL, 2015.

[76] A. Krizhevsky, “Convolutional Deep Belief Networks on CIFAR-10,” https://
www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf, 2010.

[77] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with
Deep Convolutional Neural Networks,” in NIPS, 2012.

[78] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in CGO, 2004.

[79] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “LeNet-5, Convolutional Neural
Networks,” http://yann.lecun.com/exdb/lenet, 2015.

[80] Y. Lecun, L. D. Jackel, L. Bottou, C. Cartes, J. S. Denker, H. Drucker, U. Müller,
E. Säckinger, P. Simard, V. Vapnik, and et al., “Learning Algorithms For Classifi-
cation: A Comparison On Handwritten Digit Recognition,” in Neural Networks:
The Statistical Mechanics Perspective, 1995.

[81] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving Memory Bank-Level
Parallelism in the Presence of Prefetching,” in MICRO, 2009.

[82] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu, “Simultaneous Multi-
Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” ACM
TACO, 2016.

[83] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in
SIGMETRICS, 2017.

[84] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,
“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
in HPCA, 2015.

[85] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.

[86] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: Preventing Row-
Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

[87] J. H. Lee, J. Sim, and H. Kim, “BSSync: Processing Near Memory for Machine
Learning Workloads with Bounded Staleness Consistency Models,” in PACT,
2015.

[88] Y. Lee, “Handwritten Digit Recognition Using k-Nearest-Neighbor, Radial-Basis
Function, and Backpropagation Neural Networks,” Neural Computation, 1991.

[89] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert, M. R. Stan,
and K. Skadron, “Fulcrum: A Simplified Control and Access Mechanism Toward
Flexible and Practical In-Situ Accelerators,” in HPCA, 2020.

[90] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan,
and Y. Xie, “SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ
Accelerator,” in MICRO, 2018.

[91] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A DRAM-
Based Reconfigurable In-Situ Accelerator,” in MICRO, 2017.

[92] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-
Memory Architecture for Bulk Bitwise Operations in Emerging Non-Volatile
Memories,” in DAC, 2016.

[93] Y. Li and J. M. Patel, “BitWeaving: Fast Scans for Main Memory Data Processing,”
in SIGMOD, 2013.

[94] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Convolutional Neural
Network,” in NIPS, 2017.

[95] LLVM Project, “Auto-Vectorization in LLVM — LLVM 12 Documentation,” https:
//llvm.org/docs/Vectorizers.html.

[96] G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani, D. P.
Zhang, and M. Ignatowski, “A Processing in Memory Taxonomy and a Case for
Studying Fixed-Function PIM,” in WoNDP, 2013.

[97] B. Lopes, R. Auler, R. Azevedo, and E. Borin, “ISA Aging: A X86 Case Study,” in
WIVOSCA, 2013.

17

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://www.intel.com/content/www/us/en/processors/core/
http://www.intel.com/content/www/us/en/processors/core/
http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf
http://yann.lecun.com/exdb/lenet
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html

[98] B. C. Lopes, R. Auler, L. Ramos, E. Borin, and R. Azevedo, “SHRINK: Reducing
the ISA Complexity via Instruction Recycling,” in ISCA, 2015.

[99] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,
B. Khessib, K. Vaid, and O. Mutlu, “Characterizing Application Memory Er-
ror Vulnerability to Optimize Data Center Cost via Heterogeneous-Reliability
Memory,” in DSN, 2014.

[100] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

[101] Micron Technology, Inc., “Calculating Memory System Power for DDR3,” Tech-
nical Note TN-41-01, 2015.

[102] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A Tool
to Model Large Caches,” HP Laboratories, Tech. Rep. HPL-2009-85, 2009.

[103] O. Mutlu, “The RowHammer Problem and Other Issues WeMay Face as Memory
Becomes Denser,” in DATE, 2017.

[104] O. Mutlu, S. Ghose, J. Gomez-Luna, and R. Ausavarungnirun, “Processing Data
Where It Makes Sense: Enabling In-Memory Computation,” MICPRO, 2019.

[105] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A Modern Primer
on Processing in Memory,” in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann. Springer, 2021.

[106] O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2019.
[107] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for

Chip Multiprocessors,” in MICRO, 2007.
[108] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing

Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[109] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: Enabling

Instruction-Level PIM Offloading in Graph Computing Frameworks,” in HPCA,
2017.

[110] NIMO Group, Arizona State Univ., “Predictive Technology Model,” http://ptm.
asu.edu/, 2012.

[111] NVIDIA Corp., “NVIDIA Management Library (NVML),” https://developer.
nvidia.com/nvidia-management-library-nvml.

[112] NVIDIA Corp., “NVIDIA Titan V,” https://www.nvidia.com/en-us/titan/titan-v/.
[113] G. F. Oliveira, P. C. Santos, M. A. Z. Alves, and L. Carro, “NIM: An HMC-Based

Machine for Neuron Computation,” in ARC, 2017.
[114] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar, I. Fernandez,

M. Sadrosadati, and O. Mutlu, “A New Methodology and Open-Source Bench-
mark Suite for Evaluating Data Movement Bottlenecks: A Near-Data Processing
Case Study,” in SIGMETRICS, 2021.

[115] OpenACC Organization, “The OpenACC®Application Programming Interface,
Version 3.1,” 2020.

[116] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene: Strong
yet Lightweight Row Hammer Protection,” in MICRO, 2020.

[117] M. Patel, J. Kim, H. Hassan, and O. Mutlu, “Understanding and Modeling On-Die
Error Correction in Modern DRAM: An Experimental Study Using Real Devices,”
in DSN, 2019.

[118] M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery
(BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data
Retention Characteristics,” in MICRO, 2020.

[119] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
and C. R. Das, “Scheduling Techniques for GPU Architectures with Processing-
in-Memory Capabilities,” in PACT, 2016.

[120] J. Picorel, D. Jevdjic, and B. Falsafi, “Near-Memory Address Translation,” in
PACT, 2017.

[121] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,” TOPLAS, 1999.
[122] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuk-

tosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact of 3D-Stacked
Memory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.

[123] Rambus Inc., “Rambus Power Model,” https://www.rambus.com/energy/.
[124] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks,” in ECCV, 2016.
[125] P. C. Santos, G. F. Oliveira, J. P. Lima, M. A. Z. Alves, L. Carro, and A. C. S.

Beck, “Processing in 3D Memories to Speed Up Operations on Complex Data
Structures,” in DATE, 2018.

[126] P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Z. Alves, E. C. Almeida, and
L. Carro, “Operand Size Reconfiguration for Big Data Processing in Memory,”
in DATE, 2017.

[127] D. Senol Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim,
R. Ausavarungnirun, M. Alser, J. Gómez-Luna, A. Boroumand, A. Nori,
A. Scibisz, S. Subramoney, C. Alkan, S. Ghose, and O. Mutlu, “GenASM: A

High-Performance, Low-Power Approximate String Matching Acceleration
Framework for Genome Sequence Analysis,” in MICRO, 2020.

[128] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “The Dirty-Block Index,” in ISCA, 2014.

[129] V. Seshadri, K. Hsieh, A. Boroumabd, D. Lee, M. A. Kozuch, O. Mutlu, P. B.
Gibbons, and T. C. Mowry, “Fast Bulk Bitwise AND and OR in DRAM,” CAL,
2015.

[130] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and
Energy-Efficient in-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.

[131] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for
Bulk Bitwise Operations Using Commodity DRAM Technology,” in MICRO,
2017.

[132] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm: In-DRAM
Bulk Copy, Initialization, Bitwise AND and OR,” arXiv:1610.09603 [cs.AR], 2016.

[133] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Move-
ment,” in Advances in Computers, 2017, vol. 106.

[134] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822 [cs.AR], 2019.

[135] S. H. SeyyedAghaei Rezaei, R. Ausavarungnirun, M. Sadrosadati, O. Mutlu, and
M. Daneshtalab, “NoM: Network-on-Memory for Inter-Bank Data Transfer in
Highly-Banked Memories,” CAL, 2020.

[136] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[137] W. Shooman, “Parallel Computing with Vertical Data,” in EJCC, 1960.
[138] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” arXiv:1409.1556 [cs.CV], 2014.
[139] M. Soeken, S. Shirinzadeh, P.-E. Gaillardon, L. G. Amarú, R. Drechsler, and

G. De Micheli, “An MIG-Based Compiler for Programmable Logic-in-Memory
Architectures,” in DAC, 2016.

[140] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning,” in HPCA, 2017.

[141] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating Graph
Processing Using ReRAM,” in HPCA, 2018.

[142] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers,”
in HPCA, 2007.

[143] A. Subramaniyan and R. Das, “Parallel Automata Processor,” in ISCA, 2017.
[144] The Open Group, “The Single UNIX Specification, Version 2,” https://pubs.

opengroup.org/onlinepubs/7908799/xsh/systime.h.html, 1997.
[145] Transaction Processing Performance Council, “TPC-H,” http://www.tpc.org/

tpch/.
[146] L. W. Tucker and G. G. Robertson, “Architecture and Applications of the Con-

nection Machine,” Computer, 1988.
[147] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random

Access Memories,” in MICRO, 2010.
[148] Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G. Luna,

M. Sadrosadati, N. M. Ghiasi, and O. Mutlu, “FIGARO: Improving System Per-
formance via Fine-Grained In-DRAM Data Relocation and Caching,” in MICRO,
2020.

[149] X. Xin, Y. Zhang, and J. Yang, “ELP2IM: Efficient and Low Power Bitwise Opera-
tion Processing in DRAM,” in HPCA, 2020.

[150] A. G. Yağlıkçı, M. Patel, J. S. Kim, R. Azizibarzoki, A. Olgun, L. Orosa, H. Hassan,
J. Park, K. Kanellopoullos, T. Shahroodi, S. Ghose, and O. Mutlu, “BlockHammer:
Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM
Rows,” in HPCA, 2021.

[151] Y. Zha and J. Li, “Hyper-AP: Enhancing Associative Processing Through A
Full-Stack Optimization,” in ISCA, 2020.

[152] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, andM. Ignatowski,
“TOP-PIM: Throughput-Oriented Programmable Processing in Memory,” in
HPDC, 2014.

[153] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accelerating Sparse
Matrix-Matrix Multiplication with 3D-Stacked Logic-in-Memory Hardware,” in
HPEC, 2013.

[154] W. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That Maxi-
mizes Throughput by Allowing Memory Requests and Commands to Be Issued
Out of Order,” U.S. Patent No. 5,630,096, 1997.

18

http://ptm.asu.edu/
http://ptm.asu.edu/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.nvidia.com/en-us/titan/titan-v/
https://www.rambus.com/energy/
https://pubs.opengroup.org/onlinepubs/7908799/xsh/systime.h.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/systime.h.html
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

APPENDIX
A AIG-to-MIG Conversion

The conversion from AND/OR/NOT representation of an opera-
tion to its MAJ/NOT representation relies on a set of transformation
rules that are derived from the characteristics of the MAJ operation.
Table 4 lists the set of transformation rules that we use to synthesize
a circuit for a desired operation with MAJ and NOT gates. We use
full addition as a running example to describe the process of syn-
thesizing a MAJ/NOT-based circuit, starting from an AND/OR/NOT
representation of the circuit and using the transformation rules.
We obtain MAJ/NOT-based circuits for other SIMDRAM operations
following the same method. In a later step (§4.2), we translate a
MAJ/NOT-based circuit to sequences of AAPs/APs operations.

Table 4: MAJ/NOT transformation Rules [7].
Commutativity (C) 𝑀 (𝑥, 𝑦, 𝑧) = 𝑀 (𝑦, 𝑥, 𝑧) = 𝑀 (𝑧, 𝑦, 𝑥)

Majority (M) if(𝑥 = 𝑦) : 𝑀 (𝑥, 𝑦, 𝑧) = 𝑥 = 𝑦
if(𝑥 = 𝑦) : 𝑀 (𝑥, 𝑦, 𝑧) = 𝑧

Associativity (A) 𝑀 (𝑥,𝑢,𝑀 (𝑦,𝑢, 𝑧)) = 𝑀 (𝑧,𝑢,𝑀 (𝑦,𝑢, 𝑥))
Distributivity (D) 𝑀 (𝑥, 𝑦,𝑀 (𝑢, 𝑣, 𝑧)) = 𝑀 (𝑀 (𝑥, 𝑦,𝑢), 𝑀 (𝑥, 𝑦, 𝑣), 𝑧)

Inverter Propagation (I) 𝑀 (𝑥, 𝑦, 𝑧) = 𝑀 (𝑥, 𝑦, 𝑧)
Relevance (R) 𝑀 (𝑥, 𝑦, 𝑧) = 𝑀 (𝑥, 𝑦, z

𝑥/𝑦)

Complementary Associativity (CA) 𝑀 (𝑥,𝑢,𝑀 (𝑦,𝑢, 𝑧)) = 𝑀 (𝑥,𝑢,𝑀 (𝑦, 𝑥, 𝑧))

Fig. 15a shows the optimized AND/OR/Inverter (i.e.,
AND/OR/NOT) Graph (AOIG) representation of a full addi-
tion (i.e., F = A + B + C𝑖𝑛). As shown in Fig. 15b, the naive way
to transform the AOIG to a Majority/Inverter (i.e., MAJ/NOT)
Graph (MIG) representation, is to replace every AND and OR
primitive with a three-input MAJ primitive where the third input
is 0 or 1, respectively. The resulting MIG is in fact Ambit’s [131]
representation of the full addition. While the AOIG in Fig. 15a
is optimized for AND/OR/NOT operations, the resulting MIG in

Fig. 15b can be further optimized by exploiting the transformation
rules of the MAJ primitive (Table 4, replicated from [7]). The MIG
optimization is performed in two key steps: (1) node reduction, and
(2) MIG reshaping.

Node reduction. In order to optimize the MIG in Fig. 15b, the
first step is to reduce the number of MAJ nodes in the MIG. As
shown in Table 1, rulesM and D reduce the number of nodes in a
MIG if applied from left to right (i.e., M

𝐿→𝑅
) and from right to left

(i.e., D
𝑅→𝐿

), respectively.M
𝐿→𝑅

replaces a MAJ node with a single
value, and D

𝑅→𝐿
replaces three MAJ nodes with two MAJ nodes

in the MIG. The node reduction step appliesM
𝐿→𝑅

and D
𝑅→𝐿

as
many times as possible to reduce the the number of MAJ operations
in the MIG. We can see in Fig. 15b that none of the two rules are
applicable in the particular case of the full addition MIG. Therefore,
Fig 15b remains unchanged after applying node reduction.

MIG reshaping. When no further node reduction is possible,
we reshape the MIG in an effort to enable more node reduction
opportunities by repeatedly using two sets of rules: (1) rulesM

𝑅→𝐿
,

D
𝐿→𝑅

, and R to temporarily inflate the MIG and create more node
reduction opportunities with the help of the new nodes, and (2) rules
A and CA, to exchange variables between adjacent nodes. Note
that in this step, rules M and D are applied in the reverse direction
compared to the previous step (i.e., node reduction step) which
results in increasing the number of nodes in the MIG. We now
describe the MIG reshaping process for the full addition example
(Fig. 15b). For simplicity, we first assume that the entire MIG is
represented as function F that computes the full addition of the
input operands A and B. Then, we apply rule M

𝑅→𝐿
while intro-

ducing variable X to the MIG (as 𝐹 = 𝑀 (𝐹, 𝑥, 𝑥)) without impacting
the functionality of the MIG (Fig. 15c). We then apply the same
rule again, and replace X with a new MAJ node while introducing
variable Y (Fig. 15d). Next, by applying rule D

𝐿→𝑅
, we introduce a

AND

AB

AND

B

OR

AND

Cin

AND

Cin

OR

MAJ

AB 0

MAJ

B0

MAJ

1

MAJ

Cin 0

MAJ

Cin0

MAJ

1

F=A+B+Cin

MAJ

XF X

MAJ

YX Y

MAJ

XF MAJ

YF X FX

MAJ

MAJ

X

B

MAJ

BB
0

MAJ

B
0

MAJ

1

MAJ

Cin
0

MAJ

Cin
0

MAJ

1

MAJ

A

MAJ

B0

MAJ

B
0

MAJ

1

MAJ

0

MAJ

Cin
0

MAJ

1

MAJ

B

MAJ

A

A

0

0 0

Cin

1MAJ

BFA/B A A

MAJ

MAJ

A MAJ

BCin
A

MAJ

Cin
A

MAJ

A MAJ

BCin
A

MAJ

Cin
A

MAJ

A

MR→L MR→L DL→R R

ML→R I

(a) (b) (c) (d) (e)

(g) (h) (i) (j)

MAJ

YFX/Y X X

MAJ

MAJ

X

(f)

Majority rule
applied from
right to left

AND/OR/NOT to
MAJ/NOT

conversion

Majority rule
applied from
right to left

Distributivity rule
applied from
left to right

Relevance rule
Replacing X with Y (FX/Y) in left F

Replacing X with Y (FX/Y) in right F

Replace X with A,
and Y with B

Expand F Majority rule
applied from
left to right

Inverter
propagation rule

FX/Y FA/B
B

0Cin0

Cin

Cin

Figure 15: Synthesizing SIMDRAM circuit for a full addition.

19

new MAJ node and distribute the function F across the two MAJ
nodes (Fig. 15e). Now, by applying rule R to the function F on the
left, variable X is replaced with variable Y in the function F on the
left. Similarly, by applying rule R to the function F on the right,
variable X is replaced with variable Y in the function F on the right
(Fig. 15f). At this point, since ruleM

𝑅→𝐿
holds with any given two

variables, we can safely replace X and Y with variables A and B,
respectively (Figure 15g). Next, we expand function F (Fig. 15h) and
the variables replaced as a result of the previous rule are highlighted
in blue. As shown in Fig. 15h, the resulting graph after expanding
function F has multiple node reduction opportunities using rule
M

𝐿→𝑅
and starting from the top of the graph. The nodes that can

be eliminated using this rule are marked in red and the replacing
value is indicated with a red arrow leaving the node. Fig. 15i shows
the same MIG after resolving all the node reductions. We next use
rule I to remove all three NOT primitives in the rightmost MAJ
node. The final optimized MIG that is shown in Figure 15j requires
only 3 MAJ primitives to perform the full addition operation, as
opposed to the 6 we started with (in Fig. 15b).

The node reduction step followed by the MIG reshaping step are
repeated (for a predefined number of times) until we achieve an
optimized MIG that requires minimal number of MAJ operations to
perform the desired in-DRAM operation. The process of converting
an operation to a MAJ-based implementation can be automated as
suggested by prior work [7, 139].

B Row-to-Operand Allocation
Algorithm 1 describes SIMDRAM’s row-to-operand allocation

procedure. To enable in-DRAM computation, our allocation algo-
rithm copies (i.e., maps) input operands for each MAJ node in the
MIG from D-group rows (where the operands normally reside) into
compute rows. However, due to the limited number of compute
rows, the allocation algorithm cannot allocate DRAM rows to all
input operands from all MAJ nodes at once. To address this issue,
the allocation algorithm divides the allocation process into phases.
Each phase allocates as many compute rows to operands as possible.
For example, because no rows are allocated yet, the initial phase
(Phase 0) has all six compute rows available for allocation (i.e., the
rows are vacant), and can allocate up to six input operands to the
compute rows. A phase is considered finished when either (1) there
are not enough vacant compute rows to allocate all input operands
for the next logic primitive that needs to be computed, or (2) there
are no more MAJ primitives left to process in the MIG. The phase
information is used when generating the µProgram for the MIG
in Task 2 of Step 2 of SIMDRAM framework (§4.2.3), where µOps
for all MAJ primitives in phase 𝑖 are generated prior to the MAJ
primitives in phase 𝑖 + 1. Knowing that all the MAJ primitives in
phase 𝑖 are performed before the next phase 𝑖 + 1 starts, the alloca-
tion algorithm can safely reuse the compute rows for use in phase
𝑖 + 1, without worrying about the output of a MAJ primitive being
overwritten by a new row-to-operand allocation.

We now describe the row-to-operand allocation algorithm in
detail, using the MIG for full addition in Fig. 5a as an example of
a MIG being traversed by the algorithm. The allocation algorithm
starts at Phase 0. Throughout its execution, the algorithmmaintains
(1) the list of free compute rows (rows in the B-group of the subar-
ray, shown in Fig. 2) that are available for allocation (B_rows and

B_rows_DCC in Algorithm 1, initialized in lines 3–4); and (2) the
list of row-to-operand allocations associated with each MAJ node,
tagged with the phase number that the allocations were performed
in (row_operand_allocation in Algorithm 1). Once a row-to-operand
allocation is performed, the algorithm removes the compute row
used for the allocation from the list of the free compute rows, and
adds the new allocation to the list of row-to-operand allocations
generated in that phase for the corresponding MAJ node. The algo-
rithm follows a simple procedure to allocate compute rows to the
input operands of the MAJ nodes in the MIG. The algorithm does
a topological traversal starting with the leftmost MAJ node in the
highest level of the MIG (e.g., Level 0 in Fig. 5a), and traverses all
the MAJ nodes in each level, before moving to the next lower level
of the graph.

Algorithm 1 SIMDRAM’s Row-to-Operand Allocation Algorithm.
1: Input: MIG G = (V, E) ⊲ Majority-Inverter Graph G nodes <vertex, edge>
2: Output: row_operand_allocation ⊲ Allocation map of rows to operands

3: B_rows← {T0, T1, T2, T3}
4: B_rows_DCC← {DCC0, DCC1}
5: phase← 0
6: row_operand_allocation_map← ∅
7: for each level in G do
8: for each V in G[level] do
9: for each input edge in E[V] do
10: Search for input edge’s parent
11: if input edge has no parents then
12: if input edge is negated then
13: Allocate row in B_rows_DCC to input edge
14: Remove allocated row from B_rows_DCC
15: else
16: Allocate row in B_rows to input edge
17: Remove allocated row from B_rows

18: else
19: if input edge is negated then
20: Map allocated parent row in B_rows_DCC to input edge

21: else
22: Map allocated parent row in B_rows to input edge

23: if B_rows and B_rows_DCC are empty then
24: phase← phase + 1
25: B_rows← {T0, T1, T2, T3}
26: B_rows_DCC← {DCC0, DCC1}

27: row_operand_allocation← (input edge, allocated row, phase)

Case 1

Case 2

Case 3

For each of the three input edges (i.e., operands) of any given
MAJ node, the algorithm checks for the following three possible
cases and performs the allocation accordingly:
Case 1: if the edge is not connected to anotherMAJ node in a higher
level of the graph (line 11 in Algorithm 1), i.e., the edge does not
have a parent (e.g., the three edges entering the blue node in Fig. 5a),
and a compute row is available, the input operand associated with
the edge is considered to be a source input, and is currently located
in the D-group rows of the subarray. As a result, the algorithm
copies the input operand associated with the edge from its D-group
row to the first available compute row. Note that if the edge is
complemented, i.e., the input operand is negated (e.g., the edge
with operand A for the blue node in Fig. 5a), the algorithm allocates
the first available compute row with dual contact cells (DCC0 or
DCC1) to the input operand of the edge (lines 12–14 in Algorithm 1).
If the edge is not complemented (e.g., the edge with operand B for
the blue node in Fig. 5a), a regular compute row is allocated to the
input operand (lines 15–17 in Algorithm 1).
Case 2: if the edge is connected to another MAJ node in a higher
level of the graph (line 18 in Algorithm 1), the edge has a parent node
and the value of the input operand associated with the edge equals
the result of the parent node, which is available in the compute
rows that hold the result of the parent MAJ node. As a result, the

20

algorithm maps the input operand of the edge to a compute row
that holds the result of its parent node (lines 19–22 in Algorithm 1).
Case 3: if there are no free compute rows available, the algorithm
considers the phase as complete and continues the allocations in
the next phase (lines 23–26 in Algorithm 1).

Once DRAM rows are allocated to all the edges connected
to a MAJ node, the algorithm stores the row-to-operand alloca-
tion information of the three input operands of the MAJ node in
row_operand_allocation (line 27 in Algorithm 1) and associates this
information with the MAJ node and the phase number that the
allocations were performed in. The algorithm finishes once DRAM
rows are allocated to all the input operands of all the MAJ nodes in
the MIG. Fig. 5b shows these allocations as the output of Task 1 for
the full addition example. The resulting row_operand_allocation is
then used in Task 2 of Step 2 of the SIMDRAM framework (§4.2.3)
to generate the series of µOps to compute the operation that the
MIG represents.

C Scalability of Operations
Table 5 lists the semantics and the total number of AAP/APs

required for each of the 16 SIMDRAM operations that we evaluate
in this paper (§7) for input element(s) of size 𝑛. Each operation is
classified based on how the latency of the operation scales with
respect to the element size 𝑛. Class 1, 2, and 3 operations scale
linearly, logarithmically,and quadratically with 𝑛, respectively.
Table 5: Evaluated SIMDRAM operations (for 𝑛-bit data).
Type Operation # AAPs/APs Class Semantics

Arithmetic

abs 10𝑛 − 2 Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐 > 0)? 𝑠𝑟𝑐 : −(𝑠𝑟𝑐)
addition 8𝑛 + 1 Linear 𝑑𝑠𝑡 = 𝑠𝑟𝑐1 + 𝑠𝑟𝑐2

bitcount
Ω = 8𝑛 − 8 log2 (𝑛 + 1) Linear

∑𝑛
𝑖=0 𝑠𝑟𝑐 (𝑖)

𝑂 = 8𝑛
division 8𝑛2 + 12𝑛 Quadratic 𝑑𝑠𝑡 =

𝑠𝑟𝑐1
𝑠𝑟𝑐2

max 10𝑛 + 2 Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐1 > 𝑠𝑟𝑐2)? 𝑠𝑟𝑐1 : 𝑠𝑟𝑐2
min 10𝑛 + 2 Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐1 < 𝑠𝑟𝑐2)? 𝑠𝑟𝑐1 : 𝑠𝑟𝑐2
multiplication 11𝑛2 − 5𝑛 − 1 Quadratic 𝑑𝑠𝑡 = 𝑠𝑟𝑐1 × 𝑠𝑟𝑐2
ReLU 3𝑛 + ((𝑛 − 1) 𝑚𝑜𝑑 2) Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐 ≥ 0)? 𝑠𝑟𝑐 : 0
subtraction 8𝑛 + 1 Linear 𝑑𝑠𝑡 = 𝑠𝑟𝑐1 − 𝑠𝑟𝑐2

Predication if_else 7𝑛 Linear 𝑑𝑠𝑡 = (𝑠𝑒𝑙)? 𝑠𝑟𝑐1 : 𝑠𝑟𝑐2

Reduction
and_reduction 5⌊𝑛2 ⌋ + 2 Logarithmic 𝑌 = 𝑠𝑟𝑐 (1) ∧ 𝑠𝑟𝑐 (2) ∧ 𝑠𝑟𝑐 (3)
or_reduction 5⌊𝑛2 ⌋ + 2 Logarithmic 𝑌 = 𝑠𝑟𝑐 (1) ∨ 𝑠𝑟𝑐 (2) ∨ 𝑠𝑟𝑐 (3)
xor_reduction 6⌊𝑛2 ⌋ + 1 Logarithmic 𝑌 = 𝑠𝑟𝑐 (1) ⊕ 𝑠𝑟𝑐 (2) ⊕ 𝑠𝑟𝑐 (3)

Relational
equal 4𝑛 + 3 Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐1 == 𝑠𝑟𝑐2)
greater 3𝑛 + 2 Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐1 > 𝑠𝑟𝑐2)
greater_equal 3𝑛 + 2 Linear 𝑑𝑠𝑡 = (𝑠𝑟𝑐1 ≥ 𝑠𝑟𝑐2)

D Evaluated Real-World Applications
Convolutional Neural Networks (CNNs). CNNs [52, 77, 124]
are used in many classification tasks such as image and hand-
writing classification. CNNs are often computationally intensive
as they use many general-matrix-multiplication (GEMM) opera-
tions using floating-point operations for each convolution. Prior
works [52, 94, 124] demonstrate that instead of the costly floating-
point multiplication operations, convolutions can be performed
using a series of bitcount, addition, shift, and XNOR operations.
In this work, we use the XNOR-NET [124] implementations of
VGG-13, VGG-16, and LeNET provided by [52], to evaluate the
functionality of SIMDRAM. We modify these implementations to
make use of SIMDRAM’s bitcount, addition, shift, and XNOR op-
erations. We evaluate all three networks for inference using two
different datasets: VGG-13 and VGG-16 (using CIFAR-10 [76]), and
LeNet-5 (using MNIST [24]).
k-Nearest Neighbor Classifier (kNN). We use a kNN classifier
to solve the handwritten digits recognition problem [80]. The kNN
classifier finds a group of k objects in the input set using a simple
distance algorithm such as Euclidean distance [35]. In our eval-
uations, we use SIMDRAM to implement the Euclidean distance
algorithm entirely in DRAM. We evaluate a kNN algorithm using
the MNIST dataset [24] with 3000 training images and 1000 testing
images. We quantize the inputs using an 8-bit representation.
Database. We evaluate SIMDRAM using two different database
workloads. First, we evaluate a simple table scan query ‘select
count(*) from T where c1 <= val <= c2’ using the BitWeav-
ing algorithm [93]. Second, we evaluate the performance of the
TPC-H [145] scheme using query 01, which executes many arith-
metic operations, including addition and multiplication. For our
evaluation, we follow the column-based data layout employed in
[126] and use a scale factor of 100.
Brightness. We use a simple image brightness algorithm [33] to
demonstrate the benefits of the SIMDRAM predication operation.
The algorithm evaluates if a given brightness value is larger than
0. If so, it increases the pixel value of the image by the brightness
value. Before assigning the new brightness value to the pixel, the
algorithm verifies if the new pixel value is between 0 and 255. In our
SIMDRAM implementation, we use both addition and predication
operations.

21

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Basics
	2.2 Processing-using-DRAM

	3 SIMDRAM Overview
	3.1 Subarray Organization
	3.2 Framework Overview
	3.3 Integrating SIMDRAM in a System

	4 SIMDRAM Framework
	4.1 Step 1: Efficient MAJ/NOT Implementation
	4.2 Step 2: µProgram Generation
	4.3 Step 3: Operation Execution
	4.4 Supported Operations

	5 System Integration of SIMDRAM
	5.1 Data Layout
	5.2 ISA Extensions and Programming Interface
	5.3 Handling Page Faults, Address Translation, Coherence, and Interrupts
	5.4 Handling Limited Subarray Size
	5.5 Security Implications
	5.6 SIMDRAM Limitations

	6 Methodology
	7 Evaluation
	7.1 Throughput Analysis
	7.2 Energy Analysis
	7.3 Effect on Real-World Kernels
	7.4 Comparison to DualityCache
	7.5 Reliability
	7.6 Data Movement Overhead
	7.7 Data Transposition Overhead
	7.8 Area Overhead

	8 Related Work
	9 Conclusion
	References
	A AIG-to-MIG Conversion
	B Row-to-Operand Allocation
	C Scalability of Operations
	D Evaluated Real-World Applications

