
RACER: Bit-Pipelined Processing Using Resistive Memory
Minh S. Q. Truong

Carnegie Mellon University
Eric Chen

Carnegie Mellon University
Deanyone Su

Carnegie Mellon University
Alexander Glass

Carnegie Mellon University

Liting Shen
Carnegie Mellon University

L. Richard Carley
Carnegie Mellon University

James A. Bain
Carnegie Mellon University

Saugata Ghose
University of Illinois
Urbana-Champaign

ABSTRACT
To combat the high energy costs of moving data between main
memory and the CPU, recent works have proposed to perform
processing-using-memory (PUM), a type of processing-in-memory
where operations are performed on data in situ (i.e., right at the
memory cells holding the data). Several common and emerging
memory technologies offer the ability to perform bitwise Boolean
primitive functions by having interconnected cells interact with
each other, eliminating the need to use discrete CMOS compute
units for several common operations. Recent PUM architectures
extend upon these Boolean primitives to perform bit-serial compu-
tation using memory. Unfortunately, several practical limitations
of the underlying memory devices restrict how large emerging
memory arrays can be, which hinders the ability of conventional
bit-serial computation approaches to deliver high performance in
addition to large energy savings.

In this paper, we propose RACER, a cost-effective PUM archi-
tecture that delivers high performance and large energy savings
using small arrays of resistive memories. RACER makes use of a
bit-pipelining execution model, which can pipeline bit-serial w-bit
computation across w small tiles. We fully design efficient control
and peripheral circuitry, whose area can be amortized over small
memory tiles without sacrificing memory density, and we propose
an ISA abstraction for RACER to allow for easy program/compiler
integration. We evaluate an implementation of RACER using NOR-
capable ReRAM cells across a range of microbenchmarks extracted
from data-intensive applications, and find that RACER provides
107×, 12×, and 7× the performance of a 16-core CPU, a 2304-shader-
core GPU, and a state-of-the-art in-SRAM compute substrate, re-
spectively, with energy savings of 189×, 17×, and 1.3×.

ACM Reference Format:
Minh S. Q. Truong, Eric Chen, Deanyone Su, Alexander Glass, Liting Shen,
L. Richard Carley, James A. Bain, and Saugata Ghose. 2021. RACER: Bit-
Pipelined Processing Using Resistive Memory. In MICRO’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’21), Octo-
ber 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3466752.3480071

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480071

1 INTRODUCTION
Several modern applications (e.g., graph processing, genome se-
quencing, video processing, machine learning) routinely process
large amounts of data. This large-scale data processing requires a
high amount of data movement between the main memory and the
CPU in a conventional computer. Unfortunately, data movement
can consume as much as two orders of magnitude more energy than
that needed to process the data [20, 46], and can be responsible for a
majority of energy consumed for several modern applications [14].
Traditionally, data movement costs have been mitigated through
the use of on-chip caches, which exploit locality to eliminate main
memory accesses for data recently brought on-chip. However, the
memory access patterns of many of these modern applications
exhibit little locality, minimizing the benefits of caching.

To avoid data movement overheads for such applications, re-
cent works have proposed new architectures based on the principle
of processing-using-memory (PUM) [30, 75]. PUM architectures
take advantage of electrical interactions between interconnected
memory cells to perform primitive computational functions, in ad-
dition to the original role of the cells as data storage. Examples
of these primitives include various families of Boolean-complete
operators (e.g., [31, 43, 50, 74]) and multi-bit dot products (e.g.,
[8, 17, 76, 81]). Such primitives can be performed in situ on the data
(i.e., the data never has to leave the memory cell). The principles of
PUM have been demonstrated using a wide range of memory tech-
nologies, including more conventional DRAM [29, 32, 58, 74] and
SRAM [1, 23, 26, 43], and emerging technologies such as resistive
memories [5–8, 17, 28, 31, 33, 34, 38, 50–52, 55, 59, 76, 81, 90, 92, 94].1

Ideally, PUM architectures would be able to eliminate all data
movement, thanks to their ability to perform in situ operations
(which are performed using one or more primitives). A number
of practical considerations prevent this from happening, such as
(1) the wiring interconnects between cells, and (2) the exact under-
lying in-situ logic primitives enabled by a particular architecture.
Data movement over the interconnect topology is likely to exist
in any PUM architecture at a reasonable scale, as (a) the cost and
complexity of enabling direct interactions between any two arbi-
trary cells is expected to be prohibitive; and (b) modern memories
consist of many separate arrays of cells in order to achieve cost-
effective capacity scaling, and require some form of interconnect
hierarchy to enable cross-array communications. The data move-
ment due to limitations of the underlying primitives, however, can
vary significantly from architecture to architecture. As one exam-
ple, Ambit [74], an in-DRAM processing architecture, can support

1In this work, we use the term resistive memory to refer broadly to resistance-based
non-volatile memories (e.g., PCM, MRAM, ReRAM), while we use ReRAM to refer
specifically to oxide-based switches (often referred to as memristors).

1

https://doi.org/10.1145/3466752.3480071
https://doi.org/10.1145/3466752.3480071

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

AND and OR operations in place, but must copy data to special
rows of cells within a memory array to perform NOT operations. A
second example involves PUM architectures that augment memory
arrays with closely-placed CMOS compute units. As we discuss
in Section 2.3, Boolean operators are often used in PUM architec-
tures to perform bit-serial computation (i.e., a multi-bit operation is
performed one bit at a time), which results in a high latency for sev-
eral essential operations (e.g., addition, multiplication). To mitigate
these latencies, several PUM architectures add dedicated compute
units such as adders, shifters, and multipliers near the memory
arrays [1, 8, 17, 38, 58, 76]. Unfortunately, adding either special
memory cells or dedicated compute units can increase fabrication
costs significantly, due to the reduced memory densities of the re-
sulting chips. Dedicated compute units comes with a further cost
of having to “convert” data every time the CMOS compute units
are used, as the data stored in the memory cell is typically not at a
voltage and/or current that is directly compatible with CMOS logic.
The conversion requires the use of components such as sense ampli-
fiers, transimpedance amplifiers, and/or analog/digital converters,
which can consume non-trivial power and area [56].

In this work, we explore the feasibility of designing a PUM archi-
tecture that can minimize the need for architecture-induced data
movement (i.e., without the need for special cells or discrete CMOS
compute units). As prior works have shown the promise of bit-serial
computation for PUM [23, 26, 29, 32, 38, 58], we aim to find alter-
native ways of compensating for the long latencies of serialization
without significantly increasing the power or area footprints. Re-
sistive memories arranged in a crossbar topology (where a memory
cell sits at every intersection of row wires and column wires, with
the wires directly connected to cell components) provide an op-
portunity to perform many bit-serial operations at once in a single
array. In a resistive crossbar array, it is possible to take an entire
column of the array and perform a bitwise Boolean primitive with
an entire second column of the array. As a result, for a column of
size n, we can potentially increase the throughput by a factor of n,
which can amortize the latency of bit-serial operations if n is large
enough. There are, however, practical limitations to how large n
can become. While prior works have shown that crossbars made
of ReRAM (as an example) can set n as large as 1024, we show in
Section 3.3 that n needs to be much smaller when performing prim-
itives on entire columns, due to the additional current generated by
each cell on the column wire. Even projecting into the future, it will
be difficult to achieve a value of n that is much larger than 128 with
existing wire materials. A larger value would result in a current
that exceeds the wire’s maximum current carrying capacity.

Our goal in this work is to co-design an architecture and its
required circuitry for high-throughput, low-energy PUM, while
working within the practical limitations of resistive crossbar mem-
ories. This requires us to design the architecture under three key
constraints. First, our architecture should be built using small re-
sistive memory tiles whose column lengths remain small enough
to keep currents within the carrying capacities of existing wires.
Second, our architecture should use an execution model that can
deliver high throughput despite the small size of the tiles. Third, our
architecture should aim to minimize the need for sense amplifiers,
transimpedance amplifiers, or analog/digital converters whenever
performing operations.

To this end, we propose RACER (Resistive Accelerated Compu-
tation for Energy Reduction). RACER takes advantage of a novel
execution model that we call bit-pipelining. Column-wide bit-serial
operations allow an architecture to operate on n words at a time
for a column size of n. Bit-pipelining allows us to pipeline bit-serial
computation across multiple sets of words in parallel. For a word
width of w bits, bit-pipelining allows the architecture to operate on
w × n words at a time. In RACER, we group w small tiles together
to form a pipeline (we set w to 64 in this work to support up to
64-bit computation) that can support bit-pipelining. We stripe each
bit of a w-bit word across all w tiles in a pipeline, which allows us
to leverage two observations about bit-serial computation. First,
many bit-serial operations communicate information from one bit
position to the next (e.g., the carry bits in addition). To enable this
bit-to-bit communication in RACER, we add a one-column-wide
buffer between every adjacent pair of tiles in a pipeline. Each buffer
is made of the same resistive memory cells as the tiles themselves,
and has configurable switches that connect it to at most one of
its adjacent tiles at any time. Second, bit-serial operations tend to
perform the same series of Boolean primitives on each bit position.
As a result, we can enable the efficient pipelining of many opera-
tions by generating the primitives for only a single tile, and then
propagating the sequence of primitives from tile to tile.

We design RACER to be highly scalable, to cater to the needs of
different platforms. We group 64 pipelines together into a RACER
cluster, which forms the basic unit of scalability. Each cluster has
its own control units and peripheral circuitry, and can operate
independently of other clusters. A RACER chip can consist of one
or more clusters, which are connected together by a data sharing
network for inter-cluster communication, where distributed chip-
level network controllers coordinate the communication.

At the architecture level, we design RACER to serve as a co-
processor that can accelerate a range of data operations in memory.
To ease programmer burden, and to support a wide range of un-
derlying resistive memory technologies (and their corresponding
primitives), we propose a lightweight ISA that exposes only the
high-level operations (including both bit-pipelined operations and
other operations that RACER is optimized for) to programmers
and/or compilers. The RACER ISA supports operations on a range
of word sizes, from 8-bit words to 64-bit words.

RACER is compatible with any resistive memory crossbar, includ-
ing MRAM and ReRAM. We evaluate a specific implementation of
RACER that makes use of ReRAM crossbars based on MAGIC [50],
which supports a single Boolean NOR primitive. We synthesize and
simulate all of the circuitry for RACER, and demonstrate that it
can operate within reasonable power limits and thermal densities
at a 333MHz frequency, with an 8GB RACER chip (consisting of
4096 clusters) fitting within a 4 cm2 area. Using a range of data-
intensive microbenchmarks extracted from real-world applications,
we quantitatively compare the performance and energy consump-
tion of RACER to (1) a 16-core Xeon CPU baseline with conventional
DRAM [39], (2) the Xeon CPUwith on-chip high-bandwidth embed-
ded MRAM, (3) a modern NVIDIA GPU with 2304 shader cores [68],
and (4) the Duality Cache SRAM-based PUM architecture [26]. We
show that RACER outperforms all four of these state-of-the-art
systems (with an average performance of 107× that of the baseline,
71× that of the CPU with embedded MRAM, 12× that of the GPU,

2

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

and 6.7× that of Duality Cache), while delivering significant energy
savings (189× over the baseline, 94× over the CPU with embedded
MRAM, 17× over the GPU, and 1.3× over Duality Cache).

We make the following contributions in this work:
• We forecast how key ReRAM technology parameters are expected
to scale in coming years. We use this forecast to determine how
this impacts architectural design.

• We develop a novel execution model for small-tile-based pro-
cessing-using-memory, called bit-pipelining. Bit-pipelining ex-
ploits communication patterns and command reuse in bit-serial
computation to significantly increase throughput, while using
lightweight control circuitry.

• We propose RACER, a hardware design and corresponding ISA
abstraction for high-throughput, high-energy-efficiency process-
ing using small memory tiles. RACER is compatible with any
logic-capable resistive memory technology, and we design its
control and peripheral circuits to maintain high memory density.

2 BACKGROUND
In this section, we provide a brief discussion on the underlying
technologies that we build RACER on top of.

2.1 Crossbar Topology for Memories
As DRAM scaling issues continue to be difficult to solve [45, 64, 65],
researchers have been developing a number of emerging mem-
ory alternatives, which are starting to reach commercial deploy-
ment [15, 63, 93]. These alternatives include resistive memories
such as MRAM, PCRAM, and ReRAM. While the specific design of
a memory cell depends on the particular technology, each memory
cell generally has a selector element to enable access to it, and a
storage element that holds the data. Such cells are referred to as
1S1R (one selector, one resistor) devices.

Device and circuit researchers have envisioned a way to integrate
these emerging memory technologies fully into the back-end-of-
line (BEOL) CMOS process, by using a crossbar array topology for
access control [93], as shown in Figure 1a for ReRAM. In a crossbar,
columns of metal wires connects to the selectors of all cells in the
array in one layer, and rows of metal wires connects to the memory
storage elements in a second layer, where one memory cell sits at
the intersection of each row and each column. In a crossbar array,
a single cell can be selected by asserting predetermined selection
voltages on one row wire and one column wire.

(a) (b)

Figure 1: (a) ReRAM crossbar: selectors shown in purple, re-
sistive switches in blue; (b) NOR operation: current in blue.

The crossbar topology enables the elimination of CMOS selec-
tion transistors that are required for more traditional 1T1R (one
transistor, one resistor) devices [15, 93]. While current 1T1R device
prototypes have more reliable selector elements, there has been
significant research in recent years on improving the reliability of

CMOS-less selector elements (e.g., for 1S1R devices [44, 78]). De-
vices with CMOS-less selector elements are fully BEOL-compatible,
and leave the underlying CMOS available for logic that interacts
with the memory cells (e.g., controllers, additional compute units).

2.2 ReRAM Devices
A redox-based RAM (ReRAM) cell is a non-volatile resistive mem-
ory device that stores data in an oxide-based switching filament,
where a reduction–oxidation (redox) chemical reaction changes the
oxidation state of the filament. The data is stored in the form of a
resistance value, which can be changed by applying a switching
voltage that triggers a redox reaction [88]. A common high-density
ReRAM cell configuration is 1S1R, where a CMOS-less selector is
placed in series with the oxide-based memory switch. Two-terminal
ReRAM cells can be arranged into a crossbar, as shown in Figure 1a.

Each cell can store one or more bits’ worth of data, where the bit
count is a function of the resistance range of the memory switch.
Prior work proposes to store multiple bits of data per cell [53],
which can enable analog multi-bit operations such as dot products.
However, given the poor stability and repeatability of programmed
resistance changes relative to the total range of resistance changes
possible [82], we treat ReRAM cells as digital devices that each store
only a single bit of data. While this prevents us from using multi-bit
operations, it ensures higher reliability and avoids the need for
complex analog-to-digital converters (ADCs) during processing.

2.3 NOR-Based Computation with ReRAM
Prior work shows that through a careful choice of column selection
voltages, ReRAM devices can interact with each other to perform
NOR operations [50]. Figure 1b shows a NOR operation for three
cells in the same row, by applying a column selection voltage of
Vnor to the two input cells and a column selection voltage of GND to
the output cell, and keeping the row selection voltage floating (i.e.,
keeping the row line electrically disconnected from any voltage
source). As illustrated by the current flow in the figure, floating the
row line allows the input cells to determine the row line voltage,
which is then used to program the output cell. This behavior can
be extended to entire columns of input cells, by floating all row
selection voltages in an array, which enables bitwise NOR for any
two columns of data (they need not be adjacent columns). As NOR
operations are logically complete, (i.e., any arbitrary Boolean func-
tion can be expressed using a combination of NOR operations), we
use NOR-capable ReRAM as the building block of our architecture.

Boolean operators are commonly exploited in PUM architectures
using bit-serial (i.e., bit-sliced) computation [1, 8, 50]. Bit-serial
computation takes one word of data and performs the computation
one bit at a time. A bit-serial operation can be broken down into
two functions that are computed for every bit: (1) a local function,
whose output does not need to propagate across bits; and (2) a global
function, whose output is fed into the functions that compute the
next bit in sequence. A commonly-known example of bit-serial
computation is the ripple carry adder (RCA), where the addition is
computed bit-by-bit starting with the least-significant bit (LSB). In
RCA, the local function for bit i generates the sum bit i, while the
global function for bit i generates the carry out from bit i, which is
rippled (i.e., propagated) to bit i + 1.

3

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

3 MOTIVATION
We explore three key aspects that impact the design of practical
crossbar-based PUM architectures. First, we discuss how the high
latencies of bit-serial computation can potentially be amortized
through the use of whole-column computation (Section 3.1). Second,
to understand how large we can make the crossbar columns, we
project how ReRAM arrays will scale in the future due to device-
level innovations (Section 3.2). Third, using these projections, we
discuss why column sizes are limited by inherent technological
constraints, and restrict the ability of whole-column computation
to fully amortize bit-serialization latencies (Section 3.3).

3.1 Computing on Entire Columns of Data
While bit-serial operations are a natural fit for in-memory Boolean
primitive, bit-serialization comes with a significant latency penalty.
For example, in order to perform addition using NOR-capable
ReRAM, we would need to perform 22 NOR primitives per bit for
a full addition that takes in two operand bits and one carry-in bit,
and produces a sum and carry-out bit. For a NOR-capable ReRAM
device where each NOR primitive takes 1 ns, a 64-bit bit-serial rip-
ple carry addition would take 1408 ns, which is orders of magnitude
higher than the latency of a 64-bit CMOS carry-lookahead-based
adder (5.5 FO4 [66], or 60.5 ps in 45 nm technology [41]).

To enable bit-serial-based architectures with reasonable per-
formance, prior works take advantage of the ability to perform a
Boolean primitive on an entire column of a crossbar at once (see
Section 2.3). For a column of length n, n bit-serial additions can be
performed in parallel. Thus, high-enough parallelism compensates
for the high latency. For a large enough n, this potentially allows bit-
serial PUM addition to achieve similar or greater throughput than
a conventional CPU, without spending energy on data movement.

3.2 Scaling ReRAM Arrays
To understand how large we can practically make n, we need to con-
sider the physical structure of emerging memory, how it is likely to
scale, and the constraints that will be imposed on the architecture.
Using literature on fabricated devices and projected device prop-
erties [16, 62, 67, 77, 79, 84, 85, 91], we develop Table 1. The table
shows the capabilities of current ReRAM devices, conservatively-
scaled attributes that researchers expect are within easy reach for
fabrication in the near future, and aggressively-scaled attributes
that are expected to be possible but require further research.

3.3 Crossbar Size Limitations
Unfortunately, the physics of ReRAM devices places significant
constraints on the array size. To determine a realistic array size,

Table 1: ReRAM technology scaling trends (†: derived from
other attributes).

Attribute Current Conservatively Aggressively
Technology Scaled Scaled

Switch Latency (ns) 10 [16, 67] 2 [84] 0.5
Switch Voltage (V) 2 [91] 1.5 1
Switch Energy† (pJ) 0.8 0.09 0.0064
On Resistance (kΩ) 10 [62, 79] 50 500
Off Resistance (MΩ) 1 [62, 79, 85] 5 100

BEOL Position M3–M5 M3–M5 M3–M5
Access Topology 1T1R [77] 1S1R [84] 1S1R

we examine three key constraints. First, wire resistances can limit
the array size, since these resistances increase as an array is scaled
to a smaller manufacturing process technology (e.g., for a fixed-
size crossbar with dimensions n × n). The cell resistances can be
made larger to compensate for increasing wire resistances (see
Section 3.2), so this constraint is generally weak, and allows for
n > 1024 [18]. Second, sneak path leakage currents can limit the
array size. Sneak paths are a well-documented issue in crossbars
(e.g., [15]), and limit the array size based on the on/off ratio of the
selector element. As a result, it is challenging to build an array with
n > 1024. Third, the current carrying capacity of the array wires
can limit the array size. Estimates of the maximum current allowed
in aggressively-scaled wires vary. At smaller feature sizes (e.g.,
15 nm), individual nanoscale experiments suggest current densities
of 1 × 108 A/cm2 [27, 36]. However, VLSI technology projections
that consider the statistics of failure suggest a much lower limit of
1 × 106 A/cm2 or even less [60]. This suggests a maximum current
(Imax) of 2–200 µA. Even the smallest of these values would allow
for accessing a single cell in a crossbar of any size, (e.g., typical
single-cell write currents, Iw are in the range of 1–10 µA).

While sneak path leakage currents are the limiting factor for
single-cell access, this changes when we perform primitives on
entire columns. Accessing all n elements in a column simultane-
ously places n times the current on the wire, because the cells are
connected in parallel and the column access voltage stays constant.
As a result, the limiting factor for array size in an architecture with
whole-column computation is the wire’s current carrying capacity.
For such architectures, it will be very difficult to build arrays where
n > 200 (i.e., n = Imax /Iw), and we will likely be limited to even
smaller array sizes when failure statistics are considered.

Such small memory arrays pose a major problem for practical
fabrication. A perennial concern for memory arrays is the peripheral
circuitry, which is used to select cells/columns, assert read/write
voltages, and sense cell state through measurements of resistance
(e.g., to enable I/O with other components). In a PUM architecture,
peripheral circuits would also be responsible for managing what-
ever computation takes place. From an area efficiency perspective,
larger memory arrays are favored because they allow the periph-
eral circuits (which typically grow linearly with n) to be amortized
over a greater array area (which grows with n2). Unfortunately, for
smaller arrays (e.g., where n ≤ 128), traditional peripheral circuitry
would be significantly larger than the size of the actual cell array,
leading to very poor area efficiency.

We conclude that a practical PUM architecture needs to (1) use
small memory arrays to stay within technology constraints, and
(2) rethink the peripheral circuitry to avoid poor memory densities.

4 RACER CLUSTER DESIGN
We set out to design a new architecture that can deliver the per-
formance that large arrays would achieve under whole-column
operations, using the small arrays that technology constrains us to.
To this end, we propose RACER. The basic unit in RACER is a clus-
ter, which contains several tiles (i.e., small ReRAM arrays, which we
size to 64 × 64 in this work) that work together to execute a series
of commands. A cluster contains all of the necessary components
to store data in tiles, perform logic operations, and perform I/O.

4

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

In this section, we describe key cluster design choices, including
(1) buffers to facilitate inter-tile data transfer, (2) our bit-pipelining
execution model across multiple tiles, (3) control circuitry, and
(4) I/O circuitry. We discuss the programmer interface in Section 5.

4.1 Communicating Using Buffers
A key technique to enabling higher throughput with small tiles is
to provide an efficient mechanism to move a vector of data from
one tile to another without relying on cross-domain converters.
Unfortunately, while we could connect adjacent tiles together using
controllable pass gates, this effectively creates a double-width tile,
and can result in current values that exceed the wire carrying
capacities discussed in Section 3.3. When multiple sets of pass
gates are enabled simultaneously, many adjacent tiles may be fused
together in a chain, effectively creating a large array.

Instead, we introduce buffers, as shown in Figure 2a. A buffer
consists of a 1 × 64 column of ReRAM cells, and is connected to
two neighboring tiles with pass gates to each neighbor (one pass
gate per row). RACER’s control circuitry ensures that a buffer can
connect to only one of its neighboring tiles at a time, ensuring
that the largest fused crossbar at any point is 65 × 64. Inter-tile
communication copies data into and out of buffers,2 as shown in
Figure 2b. Our topology of interleaving tiles and buffers allows us
to perform a transfer from all tiles to an attached buffer in parallel.

(a)

(b)

Figure 2: (a) Tile and buffer design, showing two values (1101
in red, 0110 in blue); (b) inter-tile data transfer.

4.2 Bit-Pipelining
RACER makes use of the repetitive logic behavior of bit-serial
operations to enable our high-throughput execution model, called
bit-pipelining. To enable bit-pipelining, RACER stores data in a bit-
striped format, where the bits of a w-bit word are distributed across
w tiles. Each bit of the word occupies the same row and column
coordinate in every tile, as shown in Figure 2a. As RACER supports
up to 64-bit word sizes, we group the 64 tiles that hold the bits of
the same 64-bit word together into a tile pipeline.
2In RACER, we program one column of each tile to always hold zeroes. We can then
NOR any other column of data with this zero column to perform a copy operation.

This bit-striped format allows us to take advantage of a key
insight in many bit-serial operations: the same operations are applied
sequentially to each bit position. Bit-serial computation in Tile t
typically takes the form of using operands in Tile t, including data
generated by the computation in Tile t – 1, generating a result
for the current bit position, and propagating some portion of the
result to Tile t + 1 (which can then perform the same operations).
In RACER, each tile’s bit-serial computation is represented as a
sequence ofmicro-ops (instructions that specify the column address
to perform NOR primitives on). We exploit this bit-serial behavior
to improve the efficiency of micro-op execution in two ways.

First, we design our controllers to let a tile reuse the micro-ops
previously executed by a neighboring tile. As a result, our control
circuitry no longer needs to generate instructions for every tile in
a pipeline. Instead, it generates the micro-op sequence for a single
tile, and then configures the pipeline to automatically propagate
this sequence from tile to tile (see Section 4.3).

Second, after a tile finishes executing its current micro-op se-
quence and passes the sequence to its neighbor, the tile is free to
work on a new micro-op sequence while its neighbor tile performs
the just-passed micro-op sequence. This effectively allows RACER
to perform pipelined execution across each bit of an operand. This
is akin to the pipeline in a CPU (albeit at a much finer granularity),
where RACER’s tiles take the place of processing stages while its
buffers take the place of pipeline registers.

4.3 Pipeline Control Circuitry
Figure 3 shows the control circuitry used to perform bit-pipelining.
In RACER, we support 8-bit, 16-bit, 32-bit, and 64-bit operands.
Given that the smallest supported granularity is 8 bits, we divide the
control circuitry up into byte groups. Within a byte group, micro-op
sequences are always propagated from one tile to another. To enable
micro-op sequence propagation from tile to tile, we implement a
series of circular FIFO queues, one per tile, which we call micro-op
queues. Because a tile can only execute one NOR primitive every
clock cycle in RACER, Tile t may need to wait multiple cycles for
Tile t – 1 to produce its needed data and transfer it to the shared
buffer (for use in Tile t’s computation). While Tile t waits for this
data, its micro-op queue starts gathering the micro-ops already
completed by Tile t – 1. To do this, the control circuitry includes a
bus that connects the head of Tile t – 1’s instruction queue to the
tail of Tile t’s queue. Micro-ops are propagated between the queues
every cycle. The start of execution on Tile t is triggered the cycle
after an inter-tile copy micro-op is inserted in the tile’s micro-op
queue (i.e., when the copy is executed by Tile t – 1), as the inter-tile
copy indicates that the intermediate data from bit t –1 is now ready
for use during the computation of bit t.

The byte group contains two other components besides the
micro-op queues. First, a broadcast bus bypasses the micro-op
queues, allowing RACER to send the same micro-op to every tile
in the byte group simultaneously. This is used by operations that
execute the same micro-op but do not propagate data from tile to
tile (e.g., a multi-bit Boolean operation). Second, a direction rever-
sal switch allows us to reverse the direction that micro-ops flow
from tile to tile, allowing instruction propagation from MSB to LSB
instead of from LSB to MSB. Within a byte group, the direction

5

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

1 2

3

Figure 3: Byte group circuitry.

reversal switch connects Micro-Op Queue 0 to either Tile 0 (in for-
ward mode) or Tile 7 (in reverse mode), Micro-Op Queue 1 to either
Tile 1 (forward mode) or Tile 6 (reverse mode), etc. This reversal
is useful for bit-serial operations that start at the MSB tile, such as
the rectified linear unit (ReLU) or magnitude comparison.

To support micro-op sequence propagation for operands greater
than 8 bits, we can connect byte groups together dynamically. To
enable this connection, we support three ways of populating the
first queue in a byte group (as shown in Figure 3): new micro-op
insertion (1 in the figure), which allows one or more byte groups to
receive a new micro-op; micro-op propagation (2), which receives
a micro-op from the last queue of the previous byte group when a
break transistor is turned on; and micro-op broadcast (3).

When a micro-op reaches the head of the micro-op queue, it
is dispatched to a decode & drive unit, as shown in Figure 3. Each
micro-op is made up of (1) three 6-bit fields to indicate the input and
output columns for the NOR primitive, and (2) a 2-bit buffer control
field that determines if either of the buffers should be connected to
the tile (i.e., if the micro-op is for an inter-tile copy, with the two bits
indicating whether to copy to the left, copy to the right, or not copy).
The decode & drive unit uses these fields to determine which three
columns to enable in order to execute the NOR primitive, and uses
a voltage selector to assert the correct voltages. We find empirically
that a 32-micro-op instruction queue length is sufficient to hold all
of the micro-op sequences for our operations (see Section 5.1).

4.4 Read/Write Circuitry
We build lightweight circuitry to read data out of and write data
into tiles, designing this circuitry carefully to avoid diminishing the
ReRAM density. Figure 4a shows our circuitry for reading from an
ReRAM cell. We use a voltage divider (consisting of the cell to be
read and a reference ReRAM cell) and a skewed inverter to deter-
mine if the cell holds a logic 0 or a logic 1, by detecting the voltage
Vsense . The reference ReRAM cell is fixed to a low resistance state,
so when a read voltage Vread is applied to the cell to be read, Vsense
will be one of two values (as shown in Figure 4b): 1 ≈ 0.5Vread , if
the read cell has low resistance (representing logic 1), as there is
an equal voltage drop over the read cell and the reference cell; or
2 ≈ 0V, if the cell has high resistance (representing logic 0), as
most of the voltage drops over the read cell.

(a)

(c)(b)

2

1

Figure 4: (a) Read circuitry for one cell in a buffer; (b) voltage
transfer characteristics graph of a skewed inverter used in
the read circuitry; (c) read/write circuitry for a buffer.

If we were to connect the read circuit to a tile, the voltage divider
would not work efficiently, as it would detect the full resistance of
the cell being read as well as partial resistances from other cells on
the wire. To avoid this scenario, we perform reads only on buffers.
Each cell in a buffer is connected to its own read circuit, allowing us
to potentially read out the entire contents of a buffer in one cycle.

For the write circuitry, we also cannot write directly to a column
in a tile without adding extra peripheral circuitry. Without this
additional circuitry, a write with the current decoder design would
populate new data into every column of a tile. This additional pe-
ripheral circuitry would require significant area, diminishing the
memory density. Instead, similar to the read circuits, we attach
our write circuits only to buffer cells. The write circuit contains
a write driver, which asserts a voltage that changes the buffer’s
resistance. An entire column of data can be written into the buffer
in two cycles: the first cycle presets the entire buffer to all zeros,
and the second cycle writes logic 1 to all enabled cells.

Figure 4c shows the buffer-level read/write circuit layout. We
discuss how to connect this to an I/O controller in Section 5.2.

4.5 Control Amortization & Cluster Scaling
So far, we discuss the components needed to control a single RACER
pipeline. Unfortunately, the control circuitry required to enable bit-
pipelining and support reads/writes consumes significantly more
area (308×) than the 64 tiles in a pipeline Similarly, adding the
decode & drive unit to every tile would consume over 30W of static
power for an 8GB chip, and every pipeline would expose 4096
read/write ports to the I/O controller. To avoid these expensive
scaling factors, we share components across multiple pipelines,
leading us to include 64 pipelines in each cluster.

In RACER, we share a single set of pipeline control circuitry
and decode & drive units across all 64 pipelines. In other words, a
single instruction queue t and its corresponding decode & drive
unit is shared across 64 tiles (every Tile t in the 64 pipelines). We
add a lightweight pipeline selector circuit to choose which of the
64 pipelines receives commands from the decode & drive unit.While
this means that only a single pipeline in a cluster can be active at a
time, this reduces the thermal density of RACER to 0.02W/mm2,
well within the limits tolerable by conventional cooling methods.

6

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

To reduce the number of read/write ports, we multiplex the ports
on a 64-bit bus, with each wire dedicated to a single buffer in the
pipeline. Every cycle, the bus reads out one bit per buffer, which
across all 64 buffers corresponds to all of the bits of a bit-striped
64-bit word. Again, only the active pipeline can perform I/O, so we
need only a single bus for an entire cluster. The bus serves as the
communication interface to the cluster.

Figure 5 shows the final design of a cluster, including all shared
circuits. The cluster serves as the basic block of RACER. A RACER
chip can contain an arbitrary number of clusters. For example, a
chip for resource-constrained platforms may have only a single
cluster, while a chip for larger platforms may contain thousands of
clusters. We discuss inter-cluster communication in Section 5.2.

Chip

…… …

…

…

…

…

63 1 0
…
…

…

… …… …

0
1

TileCell

…63 1 062 0

…63 1 062 1

…63 1 062 63

…

63 1 062 …

Pipeline

Pipeline Control Circuitry

Cluster

R/W Circuitry

PipelineSelector

63

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

I/O
Ctrl.

Figure 5: RACER cluster and chip design.

5 RACER ARCHITECTURE
In this section, we describe a programming abstraction and com-
munication network that allows multiple clusters to work together
to execute a data-intensive workload. We discuss this abstraction
in the context of a system where RACER is integrated as a co-
processor (serving as both main memory and a PUM platform),
though RACER can potentially serve as a standalone architecture.

5.1 RACER Instruction Set Architecture
We hide the complexity of the underlying RACER components
by introducing the notion of a RACER core. Each RACER core is
physically mapped to a unique RACER pipeline, and exposes vector
register sets to the programmer that provide low-latency access to
the 32 kB of memory cells within the pipeline. Because a pipeline
can support multiple bit granularities, we use a technique similar
to vector extensions for the x86 ISA: we provide different vector
register sets for each word length (byte/half/single/double sets for
8-/16-/32-/64-bit lengths, respectively), but these vector register
sets map to the same underlying memory locations, as shown in
Figure 6a. For a RACER chip with an 8GB capacity (4096 clusters,
64 pipelines per cluster), there are 256K RACER cores.

To program different RACER cores, programmers first identify
which cores they want to call. Programmers can then execute pro-
grams using the RACER ISA. Table 2 lists the different operations
that RACER exposes in its ISA.While most of these instructions sup-
port all of our word lengths, POPC, MUL, and MAC cannot operate on
64-bit inputs, as their output data would be larger than 64 bits and
would exceed the width of our pipeline. RACER supports primitive
predicated branch execution using the MUX instruction.

(a) (b)

Figure 6: (a) Vector register set mapping to a pipeline;
(b) RACER programming abstraction.

Table 2: RACER ISA (†: non-bit-pipelined operations).
Op. Description/Notes Op. Description/Notes

Arithmetic Operations
ADD Two’s complement add ABS Absolute value
SUB Two’s complement subtract MUX Multiplex (i.e., choose)
POPC Population count RELU Rectified linear unit
CMPEQ Check equality LSHIFT Left shift by 1
FUZZY Fuzzy search RSHIFT Right shift by 1
MUL† Multiply (only 8-/16-/32-bit) SQRT† CORDIC square root
MAC† Multiply–accumulate SIN† CORDIC sine
DIV† Division (returns quotient & remainder) COS† CORDIC cosine
MAX Searches for the maximum number EXP† CORDIC exponent
MIN Searches for the minimum number CAS Compare and swap

Boolean Operations
NOR Bitwise NOR OR Bitwise OR
NAND Bitwise NAND AND Bitwise AND
NOT Bitwise NOT XOR Bitwise XOR

Data Transfer Operations

MOV
<MOV buff [dst] = buff [src]> <SHIFT stride>
Moves data stored in buffers of SHIFT Parallel data shift
core src to buffers of core dst dst = src + stride

Configuration Operations

SET
<SET start, stop, stride> Turns off
Turns on RACER core i UNSET all RACER cores
for i ∈ range(start, stop, stride) that are active

5.2 Data Sharing Network
Because each RACER core only has low-latency access to 32 kB
of data (i.e., its own vector registers), it may need to access data
stored on other cores for certain applications. To enable core-to-
core communication, we design a lightweight, distributed network
for data sharing. Recall that each cluster has a 64-bit read/write bus
(Section 4.5). As we stamp out multiple clusters next to each other
in a grid within a chip, we design an I/O controller that provides
non-uniform memory access (NUMA) to the other clusters in the
chip, laid out as shown in Figure 5.

Each I/O controller connects four neighboring clusters together,
enabling local communication across the clusters (and across differ-
ent pipelines in the same cluster). Each cluster is connected to four
different I/O controllers, as shown in Figure 5. Thus, each RACER
core has local access to nine clusters (except for cores in clusters
along a chip edge), providing 18MB of local memory.

The I/O controllers enable access to non-neighboring clusters
by communicating with each other. Each local I/O controller works
independently, avoiding the need for centralized hardware (and thus
avoiding a potential communication bottleneck). Instead, to enable
cross-chip communication, we connect all of the I/O controllers
together using a mesh network. Each network request contains
(1) source/destination core IDs and (2) a priority level, both of which
are used to make local routing decisions at each network hop. We
observe in the applications we study that most communication is
local, allowing us to use such a simple global network.

To enable off-chip communication, each I/O controller is con-
nected to a 512-bit chip-wide shared bus that interfaces with the

7

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

CPU. A controller can burst up to eight cache lines of data (i.e.,
512 B) to the CPU on this bus. Our circuit simulations show that
moving 512 B of data from an I/O controller to the CPU interface
takes 16 ns, and can support a peak bandwidth of 32GB/s.

RACER exposes NUMA to the programming interface as two tiers
of shared memory: local memory and global memory (Figure 6b).
The ISA provides two types of data transfer operations, shown in
Table 2: (1) MOV, a scalar operation that can move all of the data
stored in the 64 buffers of a core to another core; and (2) SHIFT,
which shifts all data stored in all active cores’ buffers to new cores.

5.3 Support for Non-Pipelined Operations
While RACER is optimized for bit-pipelined operations, we can use
it to enable a number of shift-based, non-pipelined operations (in-
teger multiply, multiply–accumulate, integer divide, trigonometric
functions and square root using CORDIC [86]). A characteristic of
non-pipelined operations is that each tile in a pipeline can either
(1) execute a unique micro-op not previously executed by another
tile (hence the micro-op cannot be pipelined), or (2) remain idle for
a number of cycles before executing a unique micro-op. While the
execution behavior for these operations is more complicated than
that of bit-serial operations, we can leverage RACER’s bit-striping
and ReRAM buffers to efficiently perform these operations.

In non-pipelined mode, RACER configures the micro-op queues
(Section 4.3) to store only one micro-op at any time. For every
cycle, Micro-Op Queue t copies its current micro-op to Micro-Op
Queue t + 1, and then overwrites its existing micro-op with the
micro-op that it receives fromMicro-Op Queue t–1. This effectively
turns the micro-op queues of a byte group into an eight-register
scan chain, where it takes eight cycles for all micro-ops to reach
the correct queues. Although the performance of non-pipelined
mode is significantly lower than that of bit-pipelining due to the
lack of micro-op reuse, RACER can still enable high-performance
execution of these operations without adding new logic blocks.

Some non-pipelined operations such as multiply or multiply–
accumulate do not require all eight tiles in a byte group to be active
at the same time. For such operations, the controller issues special
all-zero-bit micro-ops to disable the decoder & drive units of certain
tiles in the byte group. All eight byte groups of a RACER core can
populate their scan chains in parallel, and the core can issue a new
set of micro-ops to its 64 tiles every eight cycles.

We briefly describe two operations that make use of RACER’s
non-pipelined mode. Although these operations are based on differ-
ent algorithms, they both take advantage of RACER’s low-latency,
low-overhead shift abilities. By employing bit striping across tiles,
we can implement shift operations in programs simply by using
inter-tile data transfers through the buffers. This avoids the need
for any dedicated circuitry for shift operations, which a number of
prior PUM architectures require (as they typically store all bits of a
number in a single array). RACER’s LSHIFT and RSHIFT operations
perform bulk shifting, as they are applied to entire columns, and
can be performed in parallel by multiple tiles in a pipeline.

Wallace-Tree-BasedMultiplication. RACER performs n-bit mul-
tiplication (C = A · B) in three steps, similar to tree-reduction-based
CMOS multipliers: (1) it generates partial products, (2) it reduces
the partial products using theWallace tree reduction algorithm [24],

and (3) it performs a final ripple carry addition (RCA) of the last two
rows of partial products. In Step 1, n rows of partial products are
generated from the multiplier (A) and multiplicand (B). In Step 2, a
predetermined micro-op sequence of full adder equations is sent to
the micro-op queues to reduce n rows of partial products to two
rows, based on the Wallace tree algorithm. In Step 3, a single RCA
is sent to the tiles to add the last two rows into the output C.

Figure 7 shows an example with A=0101; B=1110. First, RACER
uses LSHIFT and RSHIFT operations to create shifted copies of A
and B (1 in the figure; B not shown for clarity). We refer to A’s
left-shifted-by-i copy on line i as Ai . Second, RACER ANDs all bits
of Ai with the ith bit of B to generate four partial products (2).
Third, RACER performs column-wise adds based on the Wallace
tree reduction algorithm (3). The addition reduces the number of
partial product lines to 3 (4). Next, the carry bits are left-shifted by
one (5). The tree reduction (3 – 5) repeats until only two partial
products remain (6). A final RCA (7) generates the product C (8).

11
0
1

0
1

0
1
0
1

0
1

0
1
00

A0
A1
A2
A3

00
0
1

0
1

0
1
0
1

0
1

0
1
00

A0·B[0]
A1·B[1]
A2·B[2]
A3·B[3]

00
0
1

0
1

0
1
0
1

0
1

0
1
00

Whole Column
Full Add
Whole Column
Half Add

00
1
0

0
1

0
0
1

1
0

1
0

0
Sum
Carry

00
1

0
1

0
0
0

1
0

1
10

0
Sum
Carry << 1

Tile 01234567

0
00

1
0
1

0
0

1
1

0
0

0
0

0
00

1
0
1

0
0

1
1

0
0

0
0 Rowwise

RCA
0

0

0
0

1
0
1

1
0
1

0
0
0

0
1
1

0
0
0

1
0
0

Sum: Final
Product

Tile 01234567

2

3

5

6

1

4

7

8

Figure 7: Multiplication in RACER (buffers not shown).

This sequence of operations is analogous to the operations per-
formed by a Wallace-tree-based CMOS multiplier. The key differ-
ence between the two is that RACER performs all full adds using
the same set of tiles, whereas a CMOS multiplier requires multi-
ple physical full adder circuits arranged in a tree-like structure,
consuming a significant amount of power and area. A secondary
difference is that RACER can adapt to other types of tree-based
multiplication, such as the Dadda multiplier [19], without needing
to physically rewire the circuit, which cannot be done in CMOS.

CORDIC-Based Functions. The CORDIC algorithm [86] is a me-
thod of iteratively updating three input values x, y, and z over
multiple iterations of bitwise operations to perform complex math-
ematical functions such as sine, cosine, or square root. The exact
function performed depends on the initial values of x, y, and z.
CORDIC performs the following calculations at each iteration i:

x[i + 1] = x[i] – 𝜎i2–iy[i] (1)

y[i + 1] = y[i] + 𝜎i2–ix[i] (2)

z[i + 1] = z[i] + 𝜎itan–1(2–i) (3)
The value 𝜎i is the sign of zi (i.e., either 1 or 0). In RACER, we

precompute two sets of potential outputs (i.e., x[i + 1], y[i + 1],
z[i + 1]) predicated on the value of 𝜎i . A MUX operation selects
the correct set of outputs for that iteration. The values of 2–iy[i]
and 2–ix[i] (Equations 1 and 2) can be computed in RACER using
RSHIFT operations. Because x, y, and z are stored as two’s comple-
ment numbers, RACER can perform the necessary additions and

8

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

subtractions for the update equations using RCA. The only value
that cannot be computed is tan–1(2–i) (Equation 3), which requires
the tan–1 function. We decide to store a lookup table populated
with precomputed entries for this function. A RACER core loads the
lookup table values into its vector registers before performing the
iterative update. We empirically set the number of iterations and the
number of lookup table entries to 12, to achieve a balance between
reasonable output accuracy and the storage/latency overheads.

5.4 Example Application: grep
We describe how an 8GB RACER chip executes grep, which counts
the number of instances of an 8-bit word in 64 files, each of size
58,720,256 words (about 1700 pages single spaced). In RACER, we
split grep into three phases: (1) local grep within each RACER core,
(2) partial result reduction across the cores in a cluster (intra-cluster
grep), and (3) result reduction across the entire chip.

Algorithm 1 illustrates the first phase of grep, as executed on a
single RACER core. Because we are operating on an 8-bit word size,
the program operates on eight byte sets (b[0]–b[7]) with 64 vectors
each (denoted as v[i], where 0 ≤ i < 64). We reserve seven vectors
per byte set for the intermediate values generated during addition,
and one vector per byte set to store the search pattern (v[56]),
leaving 56 vectors available per byte set for computation. For each
character in a file, we store the results of a bitwise comparison with
the search pattern. Hence, 28 vectors store the file words, while 28
other vectors store the results. We add the results together across
all eight byte sets to find the number of matches in the core.

Algorithm 1: Single-core grep within a pipeline
// Turn on all cores to do the following

1 SET 0, 262144, 1 ;
// 8 byte sets compute in parallel

2 for parallel s in range(0,7) do
// Compare all words in set to vector 56

3 for i in range(0,27) do
4 CMP b[s]v[i], b[s]v[i+28], b[s]v[56];
5 end

// Count number of matches in the same set

6 for i in range(0,27) do
7 ADD b[s]v[0], b[s]v[0], b[s]v[i];
8 end
9 end

// Reduce partial results amongst 8 sets

10 for s in range(0,27) do
11 ADD b[0]v[0], b[0]v[0],b[s]v[0];
12 end

// Partial results stored in b[0]v[0]

13 UNSET;

Figure 8 shows the second and third phases of grep, where all
partial results are added together across multiple clusters. To sim-
plify the figure, we show this using a small 4×4-cluster chip in
the figure, but the principle can be applied to RACER chips with
much larger dimensions. From the single-core grep algorithm, each
cluster holds 64 partial results, one per core. All 16 clusters can
perform the intra-cluster grep program (G; the second phase of
grep) in parallel, which brings 64 partial results into the same core
using the cluster’s designated I/O controller, and then perform 64
additions (1 in Figure 8). Each cluster then holds one partial result.
RACER uses the data sharing network to transfer the partial results
of every second cluster column to its neighboring cluster, such that
the neighbor now holds two partial results (2). Then, an addition is

2 3

5 6

1

4

7 8 9

Figure 8: RACER grep reduction operations, illustrating
intra-cluster grep (G) and partial result reduction (R). Clus-
ters shown in green, and I/O controllers shown in orange.

performed in each tile with two partial results to reduce the number
of partial results from 16 to 8 (3). At this point, only every second
cluster holds the partial results. Hence, in order to put two par-
tial results in a single cluster again to perform the next reduction,
the partial results from one cluster have to hop through two I/O
controllers before they reach the destination cluster (4), at which
point the partial results can be added together (5). This horizontal
bulk data transfer between columns of clusters is performed using
RACER’s SHIFT instruction. Note that because the data sharing
network is a 2D mesh, horizontal (and vertical) partial reductions
can take multiple hops d, where d = 1, 2, 4, 8, In the example,
d = 1, 2. After the horizontal reduction, we are left with four partial
results in our example, all of which are in the same cluster column
as each other. We can then reduce these partial results to one num-
ber, by consolidating partial results in the vertical direction (6 – 8).
Finally, after the reductions are complete, the result in the bottom
left cluster is the result of grep for the entire chip (9).

Our simulation of grep on RACER (with an 8GB chip) shows that
almost 85% of the time and 99% of the energy is spent on the single-
core and intra-cluster grep phases, indicating that the RACER data
sharing network provides low-overhead inter-core communication.

5.5 System-Level Considerations

Memory Addressing. RACER currently requires a programmer to
use physical addresses for execution (since RACER cores are tied to
physical addresses). Like other works, we do not implement virtual
memory for RACER, as virtual memory for processing-in-memory
faces several complex challenges [2, 12, 30, 37, 49, 80]. We leave a
full-feature virtual memory abstraction for RACER as future work.

Exceptions. RACER’s execution model can incorporate support for
precise exceptions. The model uses SIMD execution, where a fleet
of RACER cores are activated in parallel to execute the same set of

9

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

instructions, and a new fleet is not activated until the current fleet
finishes. If an active core needs to pause because of an exception,
(1) the exception is recorded and the current set of instructions is
saved by the RACER core controller; (2) the active cores without
exceptions keep executing until the UNSET instruction is reached;
and (3) the paused core rolls back if required by the exception
handler, and replays the saved instructions.

6 METHODOLOGY

Modeling & Simulation. We model RACER at the device, circuit,
and architecture levels. We develop a highly-detailed Verilog-A
model of an ReRAM cell partially based on the aggressively-scaled
device parameters in Table 1, while still enforcing the current car-
rying limit of the wire as discussed in Section 3 (1 ns switching
latency for the resistive element, 1 : 500 ratio of on–off resistances,
0.0128 pJ per switch transition). We synthesize RACER’s CMOS-
domain components using Synopsis Design Compiler with FreePDK
15 nm [11] to estimate the area, power, and critical path latency of
each component, along with delay and power models for the wires
connecting these components together (inserting signal repeaters
for long wires when necessary). To evaluate microbenchmarks, we
develop RACER-Sim, a detailed in-house simulator for RACER that
incorporates the data collected from our Verilog-A model and syn-
thesized circuits. This simulator faithfully models (1) execution at
a cell granularity, and (2) all data movement and communication
across the data sharing network. We have open-sourced RACER-
Sim [9], and discuss how to run it in the appendix.

Comparison Points. We quantitatively compare RACER to four
state-of-the-art systems: (1) Baseline, a 16-core CPU modeled
after the Intel Xeon Platinum 8253 [39], which uses a conven-
tional off-chip DRAM for main memory; (2) eMRAM, a variant of
Baseline that replaces the off-chip DRAM with a high-bandwidth
(333.3 GB/s for reads) connection to on-chip embedded magnetic
RAM (MRAM) [22, 87]; (3) RTX2070, an NVIDIA GPU with 2304
shader cores [68]; and (4) DC, the Duality Cache [26] architecture
proposed for in-SRAM computation, with a 35MB cache capac-
ity (the same as proposed in the original work) and a connection
to off-chip DRAM for main memory. Table 3 summarizes major
parameters of the comparison points. The eMRAM configuration
represents a future technology where multi-gigabyte MRAM banks
can potentially be stacked on top of a CPU, eliminating the off-chip
data movement bottleneck and enabling sophisticated compute
near memory. We optimistically assume that the MRAM is fully
multi-ported (with one read port and one write port per last-level
cache subbank in the CPU), to minimize contention. Each port is
512 bits wide, to allow for a single-cycle transfer of an entire cache
line from the MRAM peripheral circuitry to the last-level cache
(vs. 4 DRAM cycles for DDRx DRAM). We evaluate Baseline and
eMRAM using MARSSx86 [71], McPAT [57], and DRAMSim2 [73],
making significant modifications to DRAMSim2 to support our
aggressive embedded MRAM technology (we have open-sourced
this modified version [9]). We use a real Geforce RTX 2070 GPU
with the nvprof profiler [70] to gather execution time and average
power. We optimistically account for only kernel execution time,
ignoring memory allocation and host setup latencies. We evaluate

DC by faithfully replicating all latencies and energy values reported
in the original work [26] from architectural simulations and circuit
models (we validate the circuit models), and developing optimistic
arithmetic models for DC’s performance and latency.

Table 3: System parameters.
Configuration Parameters

No. Clusters: 32 × 32/64 × 64, 333.3MHz, 2/8 GB capacity
RACER- Cluster–Cluster Bandwidth: 1 GB/s
1024/4096 Total Mesh Bandwidth: 1024/4096GB/s

Interface w/ Host: DDR-like, 32GB/s BW, bus width: 64 bit

Baseline

x86 [40], 16 cores, 4-wide, OoO, 2.2 GHz, TDP: 125W
L1I/D Cache: 16 × 32 kB private, 8-way assoc.
L2 Cache: 16 × 16MB private, 16-way assoc.
L3 Cache: 22MB shared, 11-way assoc.
Main Memory: DDR3L [42], 8 GB, bus width: 64 bit

eMRAM
Same CPU configuration as Baseline
Main Memory: DDR-like, 8 GB, bus width: 512 bit
read: 3 ns, write: 10.5 ns
IDD4R: 170.9 mA, IDD4W: 267.2 mA

RTX2070
Turing [69], 2304 CUDA cores, 1.4 GHz, TDP: 175W
L1I/D Cache: 64 kB per SM; L2 Cache: 4MB
Main Memory: GDDR6, 8 GB, bus width: 256 bit

DC
L3 Duality Cache [26]: 35 MB, 2.5 GHz
Compute Energy: 10.26 pJ/cycle/32 B (scaled to 15 nm)
Access Energy: 5.73 pJ/cycle/32 B (scaled to 15 nm)

Microbenchmarks. We evaluate RACER using 13 data-intensive
microbenchmarks, which span multiple application fields: (1) image
processing (brightness, rgb2gray), (2) linear algebra (mmul, mvmul,
pagerank), (3) signal processing (dftSparse, dftDense), (4) classifica-
tion (manhattan, hamming, lenet5), and (5) string matching (grep,
exactMatch, fuzzyMatch). We compile optimized 16-thread x86 ISA
versions of our benchmarks for Baseline and eMRAM using gcc [25]
with the -O3 flag. We use nvcc with the -O3 flag to compile GPU
kernels. The kernels are based on highly-optimized algorithms for
GPUs, and we carefully design them to minimize branch divergence
and maximize memory coalescing. Due to their custom ISAs, we
hand-compile microbenchmarks for RACER and DC, optimizing
the data mapping to maximize locality for each architecture.3

7 EVALUATION
We perform iso-area comparisons to our four comparison points
(Baseline, eMRAM, RTX2070, and DC; see Section 6). We compare
Baseline, eMRAM, and RTX2070 to RACER-4096, a 4 cm2 RACER
chip with 4096 clusters that uses less area than a Xeon Platinum
8153 CPU [89] and a Geforce RTX 2070 GPU [83]. We compare
DC to RACER-1024, a RACER chip with 1024 clusters that fits
within the 1.4 cm2 area of a 35MB Duality Cache implemented as a
last-level cache (LLC) [26]. We obtain the LLC area and power from
McPAT, with appropriate scaling to the 15 nm technology node.
Given the smaller memory capacity of RACER-1024, we run our
microbenchmarks with reduced data sets that fit within a 2GBmain
memory footprint, and normalize these results to Baseline runs of
the reduced-data-set microbenchmark (denoted as Baseline–2GB).

7.1 Area & Circuit Synthesis Analysis
Table 4 shows a breakdown of the area, static power, and dynamic
power consumed by each component of the RACER circuitry. We
use back-end-of-line (BEOL) integration, where the ReRAM cell
3Optimal data mapping is a challenging problem for most processing-in-memory
architectures, and we leave the investigation of automated mapping to future work.

10

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 4: Costs of RACER cluster components and global
corner-to-corner (C2C) wiring with repeaters.

Component Name Area Delay Power (µW) # of Instances
(µm2) (ps) Static Dynamic Per Cluster

Tile C2C Wiring — 19 0 482 —
Cluster C2C Wiring — 140 0 714 —
Chip C2C Wiring — 16×103 0 17×103 —
1 64 × 64 ReRAM Tile 3.7 — — — 4096
64 Tiles & 64 Buffers 240 — — — 64
Bit-Pipeline Control 74×103 100 677 775 1
Decode & Drive Unit 277 27 3.11 126 64
Pipeline Selector 76 4 0.54 73 1
Selector Passgates 0.001 0 0 2×10–5 64 × 2 × 64 × 64
I/O Controller 9600 174 128 8×103 1
Driver Passgate 0.001 0 0 2×10–5 64 × 3 × 64 × 64
R/W Circuit 0.001 1 0 1×10–5 64 × 64
1 Cluster + 1 I/O Ctrl. 84×103 — 800 790 —
RACER-1024 1.4×108 — 82×104 97×105 —
RACER-4096 4×108 — 33×105 30×106 —

materials can be deposited on metal layers 3–5, with the remaining
layers available for building traditional CMOS transistors. Each
ReRAM cell occupies a 4 F2 area in a crossbar topology, and we
design a cluster such that the ReRAM array, all cluster control, and
peripheral circuitry fit within an approximately similar footprint to
improve area efficiency. Figure 9 shows a preliminary floorplan of
the different circuit components, including all wiring. Throughout
the circuit design process and construction of the RACER chips, we
conservatively enforce a maximum power budget of 80W. From
our circuit synthesis, we find that RACER’s circuit critical path is
2.6 ns, including wire delay, with each cluster dissipating 0.8mW
of static power. To include a modest guardband, we conservatively
clock RACER at 333MHz (i.e., a 3 ns cycle time).

1 Byte
Group

1 Decode
& Drive

Unit

Pipeline
Selector

I/O
Ctrl.

Figure 9: Preliminary floorplan of a RACER cluster.

7.2 Performance Analysis
Figure 10 shows the performance for each of our evaluated systems.
We make five observations from the figure.

First, eMRAM achieves modest performance improvements over
Baseline, with an average speedup of 1.5×. This is because several
benchmarks are able to take advantage of the high on-chip band-
width provided by eMRAM.We observe a direct correlation between
increased bandwidth utilization and increased performance. For
example, rgb2gray’s bandwidth utilization increases from 5.4 GB/s
to 7.9 GB/s. The increased utilization, combined with alleviating
bursty port contention that rgb2gray experiences in Baseline (due
to per-subbank ports), allows the microbenchmark to achieve a
2.9× speedup. However, despite providing eight times the band-
width of the DRAM used in Baseline, eMRAM does not achieve a

0.1
1

10
100

1000
10000

br
ig

ht
ne

ss

rg
b2

gr
ay

m
m

ul

m
vm

ul

pa
ge

ra
nk

df
tS

pa
rs

e

df
tD

en
se

m
an

ha
tt

…

ha
m

m
in

g

le
ne

t5

gr
ep

ex
ac

tM
a…

fu
zz

yM
a…

G
eo

. M
ea

n

Baseline-2GB DC RACER-1024

Sp
ee

du
p

0.01
0.1

1
10

100
1000

10000

br
ig

ht
ne

ss

rg
b2

gr
ay

m
m

ul

m
vm

ul

pa
ge

ra
nk

df
tS

pa
rs

e

df
tD

en
se

m
an

ha
tt

…

ha
m

m
in

g

le
ne

t5

gr
ep

ex
ac

tM
a…

fu
zz

yM
a…

G
eo

. M
ea

n

Baseline eMRAM RTX-2070 RACER-4096

Sp
ee

du
p

G
M

ea
n

fu
zz

yM
at

ch

ex
ac

tM
at

ch

m
an

ha
tt

an

G
M

ea
n

fu
zz

yM
at

ch

ex
ac

tM
at

ch

m
an

ha
tt

an

Figure 10: Speedup vs. Baseline (top) and Baseline–2GB (bot-
tom).
commensurate increase in performance. This is because the caches
act as a bottleneck for many of these applications (which we verify
with cache sensitivity studies; not shown due to space limits), and
thus the increased eMRAM bandwidth is only of limited use. Thus,
we conclude that simply eliminating off-chip accesses and expos-
ing high bandwidth are not enough to deliver large performance
increases for data-intensive applications.

Second, RACER enables significant performance improvements
over Baseline, with an average speedup of 107×. Instead of relying
on temporal and spatial locality in memory access patterns, many
microbenchmarks on RACER benefit from operand locality, where
the operands of the same operation are stored in the same pipeline to
make use of bit-pipelining. This reduces the need to stall formemory
transfers over the data sharing network, which would potentially
increase the memory access latency significantly. brightness, dft-
Dense, manhattan, hamming, grep, exactMatch, and fuzzyMatch are
all able to take advantage of operand locality.

RACER also benefits from providing three different levels of par-
allelism for bit-serial operations: (1) tile-level parallelism (a NOR
primitive operates on 64 words at a time), (2) pipeline-level paral-
lelism (bit-pipelining enables 64 primitives to execute in parallel in
a single pipeline), and (3) cluster-level parallelism (with n clusters,
we can turn on n pipelines concurrently). As a result, when operand
locality is maximized and there is enough data, RACER-4096 can
operate on as many as 16M words concurrently, easily amortizing
the long latencies of bit-serialization.

Third, microbenchmarks consisting of mainly non-bit-pipelined
operations still benefit from RACER’s potential for parallelized ex-
ecution. rgb2gray, mmul, mvmul, dftSparse, and lenet5 achieve a
reasonable average speedup of 8.9× compared to Baseline. This is
notably lower than the speedup of other benchmarks because of the
heavy use of non-pipelined operations. Recall from Section 5.3 that
we need to disable micro-op reuse for non-pipelined operations.
This requires micro-ops to be brought into the byte group serially.
Non-piplined operations cannot hide this front-end serialization,
while being unable to benefit from pipeline-level parallelism. How-
ever, RACER still provides tile-/cluster-level opportunities for par-
allelism, and eliminates data movement and cache access latencies
that exist in Baseline. For example, even though 95.7% of the execu-
tion time of lenet5 is spent on non-pipelined operations (primarily
MAC), it can inference across 85 images in parallel on RACER-4096,
as a single image requires only seven clusters.

11

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

Fourth, RACER achieves an average speedup of 12× compared
to RTX2070. For streaming applications such as brightness and
rgb2gray, RACER-4096 outperforms RTX2070 because it can process
data in-place, while RTX2070 needs to copy data from host memory
to the GPU global memory, and later transfer it from global memory
to the shader cores. lenet5 performs significantly better on RTX2070,
due to the GPU kernel’s ability to exploit significant weight reuse
(reducing memory transfer overheads).

Fifth, RACER significantly outperforms DC, which is a state-of-
the-art PUM architecture that relies on discrete logic to avoid the
high bit-serialization latencies for common operations. DC achieves
a modest average speedup of 3.8× compared to Baseline–2GB, de-
spite offering many opportunities for parallel PUM computation.
This is because DC uses SRAM cells and their associated peripheral
circuitry, both of which are significantly larger than their ReRAM
counterparts. As a result, in the same area that RACER can store
and process 2GB of data, DC, can only store and process 35MB.
Even though we map data and computation to DC to maximize lo-
cality, DC still requires many accesses to off-chip DRAM to swap in
different working sets of data. For microbenchmarks such as lenet5
and rgb2gray, DC significantly outperforms RACER because these
microbenchmarks do not require many off-chip accesses. lenet5 can
store all of its weight values in DC throughout the entire execution,
requiring only a small amount of image data to be brought in from
DRAM. In contrast, benchmarks such as grep perform significantly
better on RACER than on DC. On DC, grep spends 99.8% of its
execution time waiting for new data to come in from DRAM. In
contrast, RACER’s distributed approach to computing grep (Sec-
tion 5.4) allows it to extract significant parallelism and highly-local
memory accesses. Averaged across all of our microbenchmarks,
RACER achieves a 6.7× speedup over DC.

We conclude that RACER’s bit-pipelining execution model, and
its supporting control circuitry, effectively extract very high levels
of parallelism, resulting in significant performance improvements.

7.3 Energy Analysis
Figure 11 shows the normalized energy savings for our evaluated
systems. We make four observations from the figure.

First, eMRAM achieves modest system energy reductions by
eliminating DRAM-specific processes such as precharge, activation,
and refresh. This allows eMRAM to reduce memory power by 20×

0.1
1

10
100

1000
10000

br
ig

ht
ne

ss

rg
b2

gr
ay

m
m

ul

m
vm

ul

pa
ge

ra
nk

df
tS

pa
rs

e

df
tD

en
se

m
an

ha
tt

…

ha
m

m
in

g

le
ne

t5

gr
ep

ex
ac

tM
a…

fu
zz

yM
a…

G
eo

. M
ea

n

Baseline-2GB DC RACER-1024

0.1
1

10
100

1000
10000

br
ig

ht
ne

ss

rg
b2

gr
ay

m
m

ul

m
vm

ul

pa
ge

ra
nk

df
tS

pa
rs

e

df
tD

en
se

m
an

ha
tt

…

ha
m

m
in

g

le
ne

t5

gr
ep

ex
ac

tM
a…

fu
zz

yM
a…

G
eo

. M
ea

n

Baseline eMRAM RTX-2070 RACER-4096

En
er

gy
 S

av
in

gs
En

er
gy

 S
av

in
gs

G
M

ea
n

fu
zz

yM
at

ch

ex
ac

tM
at

ch

m
an

ha
tt

an

G
M

ea
n

fu
zz

yM
at

ch

ex
ac

tM
at

ch

m
an

ha
tt

an

Figure 11: Energy savings, normalized to Baseline (top) and
Baseline–2GB (bottom).

compared to Baseline, in addition to eliminating off-chip bus energy.
However, eMRAM does not eliminate the cost of data traversing
through the cache hierarchy, limiting the memory power reduction.

Second, RACER provides large energy savings over Baseline,
with an average savings of 189×. These savings go beyond simply
eliminating data movement. In Baseline, the memory and cache
subsystems consume 12% of the system energy. RACER achieves
a much larger reduction thanks to its low-power design, with no
dedicated logic, no need for costly voltage sensing for local memory
operations, and efficient amortization of costly components over
multiple pipelines (Section 4.5). As a result, RACER-4096 consumes
an average power of 31W (including 3Wof static power), compared
to 54W for Baseline even with power gating. When this lower
power is combined with RACER-4096’s faster execution time, the
energy drops significantly compared to Baseline.

Third, RACER achieves an average energy savings of 17× over
RTX2070. RTX2070 achieves significant energy savings compared to
Baseline because of its significantly faster execution time. However,
RACER consumes less power than the GPU (31W vs. 45W) while
providing even faster execution times.

Fourth, RACER uses less energy than DC for some microbench-
marks, while using more energy for others. As a result, RACER
has a modest average energy savings of 1.3× over DC. We study
two closely-related microbenchmarks, dftSparse and dftDense, to
understand the different classes of energy consumption. dftSparse
performs 32K separate 64-point transforms, which allows the mi-
crobenchmark to reuse its discrete Fourier transform (DFT) matrix
32K times. As we sawwith performance, DC can exploit this locality
to avoid off-chip memory accesses, greatly improving its efficiency.
In contrast, dftDense performs a single transform on a 9216-point
input, which requires DC to continuously stream in the matrix from
DRAM. RACER’s much denser memory array allows for the entire
matrix to be stored on-chip, resulting in its much lower energy
consumption. Across all microbenchmarks that trigger frequent
data swapping in DC (mmul, mvmul, pagerank, dftDense, manhat-
tan, hamming, grep, exactMatch, fuzzyMatch), RACER can achieve
a 4.9× energy savings compared to DC.

We conclude that RACER is a highly-energy-efficient platform
for computation.

7.4 Lifetime Analysis
One limitation on the practicality of RACER is the endurance of
emerging non-volatile memories. We explore the desired memory
cyclability for RACER (assuming 24/7 operation) by examining
the ReRAM buffers, which incur the greatest write frequency. We
assume that buffer writes occur at most every other cycle (to allow
the data to be read out). Since only one pipeline in a cluster is active
at a time, we assume that we will cycle through all 64 pipelines in
the cluster roughly equally over thememory’s lifetime.We calculate
that RACER’s buffers would incur 8.61 × 1014 writes over a 10-year
lifetime. If we factor in real-world usage (our microbenchmarks
have a buffer write activity factor of only 0.0446), the typical-case
lifetime write count is 7.68 × 1013.

As a comparison point, state-of-the-art ReRAM devices can en-
dure 1012 writes before failing [61]. We believe that given current
industrial investments in ReRAM, and the nascent nature of the

12

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

technology, device-level advancements will achieve the endurance
desired by RACER in the future. Alternatively, RACER can be built
on top of contemporary technologies with better endurance, such
as MRIMA [4] (which makes use of MRAM).

7.5 Comparison to CASCADE
We briefly compare RACER-4096 to an area-equivalent state-of-the-
art CASCADE [17] accelerator, which uses ReRAM to perform ana-
log dot products for neural networks. CASCADE does not support
most of RACER’s operations, and has a fixed neural-network-centric
dataflow, so we can compare performance only using the mmul,
mvmul, dftSparse, dftDense, and lenet5 microbenchmarks. For these
benchmarks, RACER-4096 achieves a speedup over CASCADE of
6×, 4×, 0.01×, 1.5×, and 0.09×, respectively (not shown).

We observe that while mmul, mvmul, and dftDense are memory-
bound on CASCADE due to their large working set sizes, and sig-
nificant swapping with external memory, dftSparse and lenet5 do
not require data swapping, and fully benefit from the fast analog
dot product. We conclude that RACER trades off some of the per-
formance of neural network accelerators in order to provide much
broader acceleration opportunities.

8 RELATEDWORK
To our knowledge, RACER is the first tile-based, high-performance,
energy-efficient PUM architecture that addresses the circuit-level
limitations of whole-column computations in small resistive cross-
bars. We highlight our key contributions over prior PUM works.

Processing-Using-SRAM. Several works enable computation in
caches (e.g, [1, 23, 26, 43]). These architectures leverage high locality
for data already stored in cache subbanks, but their limited storage
capacity incurs frequent data accesses to DRAM for applications
with large working sets. RACER’s scalable design allows gigabytes’
worth of data to be stored on-chip, and its efficient mesh network
provides high-performance access to the full on-chip memory. We
quantitatively compare RACER to Duality Cache [26] in Section 7.

Processing-Using-DRAM. Recent works propose to perform com-
putation in DRAM [29, 32, 58, 74]. Due to the storage of data as
a capacitive charge, DRAM cells require additional support to re-
liably perform operations using memory, such as dedicated rows
with special bitlines to enable NOT primitives [32, 74]. Furthermore,
given the large row size (8 kB in DDR3/DDR4), performing bit-serial
operations directly on row-wise data can be inefficient, forcing the
architectures to either (1) transpose data during compute so that
operands are stored on a single bitline [32], which adds signifi-
cant latency and energy; or (2) add dedicated shift logic to enable
bit-serial operations without transposing data [58]. Unlike DRAM-
based PUM architectures, RACER does not need to transpose data,
and does not require modifications to the memory array.

Processing-Using-PCM/MRAM. Existing architectures that use
PCM or MRAM as their compute-enabling technology have been
primarily based on 1T1R devices [5–7, 56]. While 1T1R devices cur-
rently demonstrate better reliability than crossbar arrays, the addi-
tion of a CMOS access transistor greatly reduces the area available
to implement peripheral circuitry, significantly reducing the mem-
ory density. Recent research (e.g., [44, 78]) has greatly improved

the reliability of crossbars, making 1T1R-based architectures less
desirable. RACER can be built on top of transistor-less PCM/MRAM
crossbar technologies, as these resistive memory devices have simi-
lar high-level constraints and features as ReRAM.

Analog Processing-Using-ReRAM. Crossbars enable the ability
to perform multiple dot products in parallel using ReRAM, by map-
ping (1) the input matrix values to multi-bit ReRAM cells, and (2) the
input vector to analog voltages applied on every column. PUM ar-
chitectures that use this primitive (e.g., [8, 17, 76, 81]) typically
target neural network inference. However, they sacrifice memory
density because they require: (1) area-intensive digital/analog con-
verters to perform analog dot products, and (2) dedicated CMOS
logic near ReRAM tiles to reduce the partial results generated in the
tile. Moreover, multi-bit analog operations are difficult to perform
reliably in ReRAM, because of device non-linearity that requires sig-
nificant precision to discern between adjacent bit representations.
In contrast, RACER uses an all-digital approach that avoids the
need for costly supplemental logic components and significantly
increases reliability, while offering a much larger set of PUM oper-
ations that can handle a wide range of data-intensive applications.
We briefly compare RACER to CASCADE [17] in Section 7.5.

Digital Processing-Using-ReRAM. Several PUM architectures
demonstrate the ability to perform logic using ReRAM crossbars
(e.g., [28, 31, 33, 34, 38, 50, 51, 55, 90, 92]). However, as we discuss in
Section 3, these architectures are often limited in throughput they
can achieve without the assistance of discrete logic elements, due
to practical limits on array sizes when performing whole-column
operations. RACER’s bit-pipelining execution model and controller
circuitry provide a way to enable high-throughput, low-energy
bit-serial computation using small tiles.

Bit-Striping. Several prior works make use of bit-striping (i.e., bit-
planing) for applications such as data compression [3, 47], data
analysis [13, 48], and efficient storage for resistive memory [21, 35,
72]. To our knowledge, RACER is the first work to build a general-
purpose pipelined execution model on top of bit-striping.

9 CONCLUSION
We propose RACER, a highly-efficient architecture for processing
using resistive memory. Resistive memories such as ReRAM have
technology limitations that will prevent their memory arrays from
scaling to large sizes for the foreseeable future. This is at odds
with the need for large arrays in traditional PUM architectures,
which use large whole-column operations to amortize the costs
of bit-serial computation. RACER uses a novel execution model
called bit-pipelining, along with a highly-scalable architecture, to
deliver high performance with small arrays. Our evaluations show
that RACER provides significant performance and energy benefits
over state-of-the-art systems. We hope that RACER can enable the
practical use of resistive memories for PUM.

ACKNOWLEDGMENTS
We thank Raghav Gupta, Yuezhang Zou, and Shivani Prasad for
their feedback on this work. This work was funded in part by a seed
grant from the Wilton E. Scott Institute for Energy Innovation, and
by the Data Storage Systems Center at Carnegie Mellon University.

13

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

A ARTIFACT APPENDIX
A.1 Abstract
We are releasing a set of artifacts [9] that capture the performance
and energy consumption of RACER, our processing-using-memory
(PUM) architecture.

The first artifact, RACER-Sim, is a custom simulator that calcu-
lates the latency, throughput, and energy of applications executing
using a tiled crossbar memory, using the same architecture pro-
posed for RACER, but not limited to ReRAM-only memory devices.
For inputs, RACER-Sim takes in (1) device-level latency and en-
ergy costs for the different arithmetic operations supported by
the RACER architecture (with these costs derived from accurate
device-level modeling), and (2) a programwritten in the RACER ISA
(for which we currently hand-compile microbenchmarks). We use
RACER-Sim to model the performance and energy consumption of
the two RACER configurations evaluated in the paper (RACER-4096
and RACER-1024 in Section 7).

The second artifact isMARSS-CPU, an unmodified version of
the MARSSx86 architectural simulatorMARSSx86 [71] with custom
configuration files. The simulator is bundled with DRAMSim2 [73]
and McPAT [57], which provide accurate models of the DRAM
subsystem and power/energy, respectively. We use MARSS-CPU
evaluate the performance and energy of the two conventional CPU
configurations evaluated in the paper (Baseline and Baseline–2GB
in Section 7).

The third artifact is MARSS-eMRAM, a modified version of
MARSSx86, which models an embedded main memory stacked on
top of the CPU.We provide configuration files to model state-of-the-
art embedded MRAM, though the configuration can be modified to
model other embedded memory devices. We use MARSS-eMRAM
to evaluate the performance and energy of the embedded MRAM
configuration in the paper (eMRAM in Section 7).

A.2 Artifact Checklist (Meta-Information)
• Programs: RACER-Sim, MARSSx86, DRAMSim2, McPAT
• Output: Performance and energy results for every benchmark
• Experiments: (1) Run racer-sim simulations to obtain RACER-
4096 and RACER-1024 results, (2) run MARSS-CPU to obtain Base-
line and Baseline–2GB results, (3) run MARSS-eMRAM to obtain
eMRAM results, (4) extract speedups and energy savings from sim-
ulation results and compare to baselines.

• Disk space required (approximate): 10 GB
• Time needed to complete experiments (approximate): Gener-
ating all baseline microbenchmark results will take approximately
200 hours using MARSSx86’s checkpointing feature and batch mode.

• Publicly available: Yes
• Code license: MIT for RACER-Sim, GNU GPLv2 for MARSSx86,
BSD for DRAMSim2 and McPAT

• Workflow framework used: Custom shell and Python scripts to
execute simulators and extract results from simulator runs

• Archived: https://doi.org/10.5281/zenodo.5495803, with disk im-
ages and a virtual machine (VM) available at https://doi.org/10.5281/
zenodo.5495019

A.3 Description
A.3.1 How to Access. We maintain a publicly-available repository
where we have open-sourced all of our artifacts [9], with snapshots

of the repository archived. We also provide an archive [10] that
contains (1) disk images for use with our artifacts and (2) a virtual
machine with our artifacts precompiled and ready to execute.

A.3.2 Software Dependencies. Ubuntu 14.04.5, Python 3 (≥ 3.6),
Bash ≥ 4.3, GNUMake ≥ 3.4, Linux kernel version ≥ 3.13, SCons 2.3

A.4 Installation
The RACER-Artifacts repository includes the following directories:

• ./marss-cpu/: MARSSx86 with an unmodified version of DRAM-
Sim2

• ./marss-emram/: MARSSx86 with a version of DRAMSim2 modi-
fied to simulate on-chip embedded MRAM

• ./mcpat: McPAT source code used for Baseline, Basleline–2GB, and
eMRAM

• ./racer-sim/: RACER-Sim files
• ./racer-sim/src/: Contains the source code for RACER-Sim
• ./racer-sim/cost/: Contains spreadsheets detailing the device-
and circuit-level costs of RACER

• ./programs/: Contains microbenchmarks written in C++ and in
the RACER ISA, used as inputs for Baseline/Baseline–2GB/eMRAM
and RACER-4096/RACER-1024, respectively

• ./scripts/: Contains scripts to setup and process simulation out-
puts

Step 1: RACER-Sim. The RACER simulator does not require any further
software packages other than the default Python 3.6 installation.

Step 2: DRAMSim2. Installation guide can be found at https://github.com/
dramninjasUMD/DRAMSim2. We have provided the correct versions of
DRAMSim2 in ./marss-cpu/ and ./marss-emram/. Compile the DRAM-
Sim2 shared library object with the following command from inside the
DRAMSim2 directory (repeat this for each MARSSx86 directory):

make libdramsim.so

Step 3: MARSSx86. Installation guide can be found at https://github.com/
dramninjasUMD/marss.dramsim. Once completed, do the following:

• Download and unzip the disk images ubuntu-natty.qcow2 and
MRAM-ubuntu-natty.qcow2 required for the simulator from the
images archive [10].

• Compile marss.dramsim with the following command:

scons -Q c=16 dramsim=<libdramsim.so location>

The disk images that we provide already contain the necessary microbench-
mark checkpoints. MARSSx86 can run Baseline and Baseline–2GB using the
ubuntu-natty.qcow2 image, and can run eMRAM with the MRAM-ubuntu-
natty.qcow2 image. Users can point the marss.dramsim simulators to
the downloaded images by specifying the images’ locations in the file
./marss.dramsim/util/util.cfg. Step 5 of the installation process, and
Step 2 of the experiment workflow (Section A.5), can be skipped if users
need to use only the provided checkpoints.

Step 4: McPAT. Installation guide can be found at https://github.com/
HewlettPackard/mcpat. Compile with make.

Step 5: Compile Microbenchmark Binaries for MARSSx86 (can be
skipped if using provided checkpoints). C++ versions of the microbench-
marks are available in the ./programs/marss/src/ folder. Run make in that
folder, which will create the microbenchmarks’ binaries in ./programs/-
marss/bin/. Note that the microbenchmarks’ source files require the macro

14

https://doi.org/10.5281/zenodo.5495803
https://doi.org/10.5281/zenodo.5495019
https://doi.org/10.5281/zenodo.5495019
https://github.com/dramninjasUMD/DRAMSim2
https://github.com/dramninjasUMD/DRAMSim2
https://github.com/dramninjasUMD/marss.dramsim
https://github.com/dramninjasUMD/marss.dramsim
https://github.com/HewlettPackard/mcpat
https://github.com/HewlettPackard/mcpat

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

#include ptlcalls.h to perform checkpointing. The ptlcalls.h file can
be found in the marss.dramsim/ptlsim/tools/ directory (users will need
to change the include path appropriately to point to the correct file). Then,
the binaries can be uploaded to the disk image with the following command
from the ./scripts/upload2image/ folder:

bash upload.sh

Please specify the disk image and mounting locations in ./scripts/-
upload2image/upload.sh.

A.5 Experiment Workflow

Step 1: RunRACER-Sim to Generate RACER-4096 and RACER-1024
Results. Our scripts can automatically run RACER-Sim and collect all
microbenchmark latency and dynamic energy costs with the following
commands in the ./scripts/racer/ folder:

bash runracer1024.sh

bash runracer4096.sh

Step 2: Create Checkpoints for MARSSx86 (can be skipped if using
provided checkpoints). We recommend reading through the detailed tuto-
rial [54] on how to checkpoint and run batch mode for MARSSx86.

Before running checkpointing, users need to update the qemu_img vari-
able in ./marss-cpu/marss.dramsim/util/create_checkpoint.py to
the location of the disk image. To create a checkpoint, from the installed
./marss-cpu/marss.dramsim/ directory, enter the following command:

./util/create_checkpoint.py

Users can delete the provided checkpoint in the disk images and replace
it with their own using the following command:

qemu-img snapshot -d <checkpoint name> <disk image
name>

To list available checkpoints in the image, run the following command:

qemu-img info <disk image name>

Step 3: RunMARSSx86 to Generate Baseline, Baseline–2GB, and eM-
RAM Results. Before running the simulations and obtaining the results,
users will have to specify (1) the location where MARSSx86 can create
result files, using the -d flag; and (2) how many threads the simulation
can run on, using the -n flag. The flag variables need to be edited in both
the ./marss-cpu/marss.dramsim/runbench.sh file (for running Baseline)
and the ./marss-cpu/marss.dramsim/runbench2G.sh file (for running
Baseline–2GB). The simulations can then be run with the following com-
mands:

bash runbench.sh

bash runbench2G.sh

Creating checkpoints for and generating the eMRAM results can be done
in the same manner as listed above for the Baseline runs, by editing and
running ./marss-emram/marss.dramsim/runbench.sh

Step 4: Post-Process DRAM Numbers. To obtain the DRAM’s intercon-
nect throughput and average power necessary to calculate the baselines’
energy cost, execute the following command:

python3 ./scripts/postprocessing/grabPower.py <DRAM
log file>

The log file is generated as a part of running marss.dramsim.

Step 5: Post-Process CPU Numbers. The total cycle time of baselines are
available from the yml file created when marss.dramsim runs. To extract
the times, run:

python3 ./scripts/postprocessing/grabCycle.py <yml
file>

To obtain the CPU average power, we need to convert the yml output file
to McPAT’s xml format. Inside the installed marss.dramsim directory, run
the following command:

./util/marss2mcpat.py –marss <yml file> –xml_in
Xeon.xml –cpu_mode user -o <unique xml name>

Then, power numbers can be obtained by running the following command
in the installed ./mcpat/ directory:

./mcpat -infile <xml file produced previously>
-print_level 5

A.6 Evaluation and Expected Results
There are eight attributes we obtain from running the simulations:

• From ./scripts/racer/runracer<1024/4096>.sh:
(1) RACER-1024/RACER-4096 energy
(2) RACER-1024/RACER-4096 total latency

• From ./scripts/postprocessing/grabCycle.py:
(3) Baseline/Baseline–2GB/eMRAM cycle time

• From ./scripts/postprocessing/grabPower.py:
(4) Baseline/Baseline–2GB/eMRAM DRAM average power
(5) Baseline/Baseline–2GB/eMRAM off-chip interconnect through-
put

• From McPAT:
(6) Baseline/Baseline–2GB/eMRAM core power (including L1/L2
cache power)
(7) Baseline/Baseline–2GB/eMRAM L3 cache power
(8) Baseline/Baseline–2GB/eMRAM interconnect power

We provide a comparison script that quickly calculates the speedups and
energy savings based on the eight attributes above:

python3 ./scripts/compare/compare.py <attribute csv
file>

Each row of the CSV file contains the attributes for each microbench-
mark. Run ./scripts/compare/example.csv, which should generate the
reported 107× speedup and 189× energy savings for RACER-4096 compared
to Baseline.We expect the users’ simulation runs to yield identical geometric
mean speedups and energy savings to those reported in Section 7.

15

MICRO ’21, October 18–22, 2021, Virtual Event, Greece M. S. Q. Truong et al.

REFERENCES
[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das.

2017. Compute Caches. In HPCA.
[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. 2015. PIM-Enabled Instructions: A Low-

Overhead, Locality-Aware Processing-in-Memory Architecture. In ISCA.
[3] I. Alam, S. Pal, and P. Gupta. 2019. Compression With Multi-ECC: Enhanced

Error Resiliency for Magnetic Memories. In MEMSYS.
[4] S. Angizi, Z. He, A. Awad, andD. Fan. 2020. MRIMA: AnMRAM-Based In-Memory

Accelerator. TCAD (May 2020).
[5] S. Angizi, Z. He, and D. Fan. 2018. PIMA-Logic: A Novel Processing-in-Memory

Architecture for Highly Flexible and Energy-Efficient Logic Computation. In
DAC.

[6] S. Angizi, Z. He, A. S. Rakin, and D. Fan. 2018. CMP-PIM: An Energy-Efficient
Comparator-Based Processing-in-Memory Neural Network Accelerator. In DAC.

[7] S. Angizi, J. Sun, W. Zhang, and D. Fan. 2019. AlignS: A Processing-in-Memory
Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM. In DAC.

[8] A. Ankit, I. El Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P.
Faraboschi, W. m. Hwu, J. P. Strachan, K. Roy, and D. S. Milojicic. 2019. PUMA: A
Programmable Ultra-Efficient Memristor-Based Accelerator for Machine Learn-
ing Inference. In ASPLOS.

[9] ARCANA Research Group. 2021. RACER Artifacts — Zenodo Repository. https:
//github.com/ARCANA-Research/RACER-Artifacts/. archived at https://doi.org/
10.5281/zenodo.5495803.

[10] ARCANA Research Group. 2021. RACER Images — Zenodo Repository. https:
//doi.org/10.5281/zenodo.5495019.

[11] K. Bhanushali and W. R. Davis. 2015. FreePDK15: An Open-Source Predictive
Process Design Kit for 15nm FinFET Technology. In ISPD.

[12] D. Bhattacharjee and A. Chattopadhyay. 2016. Delay-Optimal Technology Map-
ping for In-Memory Computing Using ReRAM Devices. In ICCAD.

[13] B. Bonney, R. Ives, D. Elter, and Y. Du. 2004. Iris Pattern Extraction Using Bit
Planes and Standard Deviation. In ACSSC.

[14] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Raganathan, and O. Mutlu. 2018. Google Workloads for
Consumer Devices: Mitigating Data Movement Bottlenecks. In ASPLOS.

[15] A. Chen. 2016. A Review of Emerging Non-Volatile Memory (NVM) Technologies
and Applications. SSE (Nov. 2016).

[16] Y.-S. Chen, T.-Y. Wu, P.-J. Tzeng, P.-S. Chen, H.-Y. Lee, C.-H. Lin, F. Chen, and M.-J.
Tsai. 2009. Forming-Free HfO2 Bipolar RRAM Device With Improved Endurance
and High-Speed Operation. In VLSIT.

[17] T. Chou, W. Tang, J. Botimer, and Z. Zhang. 2019. CASCADE: Connecting RRAMs
to Extend Analog Dataflow in an End-to-End In-Memory Processing Paradigm.
In MICRO.

[18] A. Ciprut and E. G. Friedman. 2017. Modeling Size Limitations of Resistive
Crossbar Array With Cell Selectors. TVLSI (Jan. 2017).

[19] L. Dadda. 1965. Some Schemes for Parallel Multipliers. Alta Frequenza (Aug.
1965).

[20] W. J. Dally. 2015. Challenges for Future Computing Systems. keynote talk at
HiPEAC.

[21] N. Dastanova, S. Duisenbay, O. Krenstinskaya, and A. P. James. 2018. Bit-Plane
Extracted Moving-Object Detection Using Memristive Crossbar-CAM Arrays for
Edge Computing Image Devices. IEEE Access (2018).

[22] X. Dong, W. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. 2008. Circuit and Microar-
chitecture Evaluation of 3D Stacking Magnetic RAM (MRAM) as a Universal
Memory Replacement. In DAC.

[23] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. M . Sylvester, D. T.
Blaauw, and R. Das. 2018. Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks. In ISCA.

[24] A. El-Gamal, D. Gluss, J. Greene, J. Reyneri, and P.-H. Ang. 1986. A CMOS 32b
Wallace Tree Multiplier-Accumulator. In ISSCC.

[25] Free Software Foundation, Inc. [n. d.]. GCC, the GNU Compiler Collection.
https://gcc.gnu.org/.

[26] D. Fujiki, S. Mahlke, and R. Das. 2019. Duality Cache for Data Parallel Acceleration.
In ISCA.

[27] S. Fujisawa, T. Kikkawa, and T. Kizuka. 2003. Direct Observation of Electromi-
gration and Induced Stress in Cu Nanowire. JJAP Letters (Dec. 2003).

[28] P. Gaillardon, L. Amaru, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and
G. D. Micheli. 2016. The Programmable Logic-in-Memory (PLiM) Computer. In
DATE.

[29] F. Gao, G. Tziantzioulis, and D. Wentzlaff. 2019. ComputeDRAM: In-Memory
Compute Using Off-the-Shelf DRAMs. In MICRO.

[30] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu. 2019. Processing-
in-Memory: A Workload-Driven Perspective. IBM JRD (Nov.–Dec. 2019).

[31] S. Gupta, M. Imani, and T. Rosing. 2018. FELIX: Fast and Energy-Efficient Logic
in Memory. In ICCAD.

[32] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M. Ghiasi, M. Patel, M.
Alser, S. Ghose, J. Gomez-Luna, and O. Mutlu. 2021. SIMDRAM: A Framework
for Bit-Serial SIMD Processing Using DRAM. In ASPLOS.

[33] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi, H. M.
Elsayed, H. Corporaal, and K. Bertels. 2017. Memristor for Computing: Myth or
Reality?. In DATE.

[34] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao,
F. Catthoor, D. Wouters, L. Eike, and J. van Lunteren. 2015. Memristor-Based
Computation-in-Memory Architecture for Data-Intensive Applications. In DATE.

[35] Z. He, S. Angizi, and D. Fan. 2017. Exploring STT-MRAM Based In-Memory
Computing Paradigm With Application of Image Edge Extraction. In ICCD.

[36] M. C. Hersam, A. C. F. Hoole, S. J. O’Shea, and M. E. Welland. 1998. Potentiometry
and Repair of Electrically Stressed Nanowires Using Atomic Force Microscopy.
APL (Feb. 1998).

[37] R. B. Hur, N. Wald, N. Talati, and S. Kvatinsky. 2020. SIMPLER MAGIC: Syn-
thesis and Mapping of In-Memory Logic Executed in a Single Row to Improve
Throughput. TCAD (Oct. 2020).

[38] M. Imani, S. Gupta, Y. Kim, and T. Rosing. 2018. FloatPIM: In-Memory Accelera-
tion of Deep Neural Network Training With High Precision. In ISCA.

[39] Intel Corp. [n. d.]. Intel Xeon Platinum 8253. https://ark.intel.com/content/
www/us/en/ark/products/192465/intel-xeon-platinum-8253-processor-22m-
cache-2-20-ghz.html.

[40] Intel Corp. 2016. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Vol. 3.

[41] International Technology Roadmap for Semiconductors. 2015. ITRS 2.0, 2015
Edition. http://www.itrs2.net/.

[42] JEDEC Solid State Technology Assn. 2013. JESD79-3-1A.01: Addendum No. 1
to JESD79-3 — 1.35 V DDR3L-800, DDR3L-1066, DDR3L-1333, DDR3L-1600, and
DDR3L-1866.

[43] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. 2016. A 28 nm Configurable
Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-
Memory. In JSSC.

[44] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian. 2015. 3D-Stackable
Crossbar Resistive Memory Based on Field Assisted Superlinear Threshold (FAST)
Selector. In IEDM.

[45] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi.
2014. Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling.
In The Memory Forum.

[46] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie. 2013. Quantifying the Cost
of Data Movement in Scientific Applications. In IISWC.

[47] J. Kim, M. Sullivan, E. Choukse, and M. Erez. 2016. Bit-Plane Compression:
Transforming Data for Better Compression in Many-Core Architectures. In ISCA.

[48] J. Kim, M. Sullivan, E. Choukse, and M. Erez. 2019. A Novel Convolution Com-
puting Paradigm Based on NOR Flash Array With High Computing Speed and
Energy Efficiency. In ITCS.

[49] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating
STT-RAM as an Energy-Efficient Main Memory Alternative. In ISPASS.

[50] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser. 2014. MAGIC: Memristor-Aided Logic. TCAS II (Sept. 2014).

[51] S. Kvatinsky, A. Kolodny, U. C.Weiser, and E. G. Friedman. 2011. Memristor-Based
IMPLY Logic Design Procedure. In ICCD.

[52] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser.
2013. Memristor-Based Material Implication (IMPLY) Logic: Design Principles
and Methodologies. In VLSI.

[53] S. Lee, Y.-B. Kim, M. Chang, K. M. Kim, C. B. Lee, J. H. Hur, G.-S. Park, D. Lee, M.-J.
Lee, C. J. Kim, U.-I. Chung, I.-K. Yoo, and K. Kim. 2012. Multi-Level Switching of
Triple-Layered TaOx RRAMWith Excellent Reliability for Storage Class Memory.
In VLSIT.

[54] T. S. Lehman, Q. Wang, S. M. Zahedi, and B. C. Lee. 2014. Datacenter Simula-
tion Methodologies: MARSSx86 and DRAMSim2. https://www.seas.upenn.edu/
~leebcc/tutorial/dsm14/01-sim.pdf.

[55] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi, and S.
Kvatinsky. 2014. Logic Operations in Memory Using a Memristive Akers Array.
Microelectronics (Nov. 2014).

[56] B. Li, L. Xia, P. Gu, Y. Wang, and H. Yang. 2015. Merging the Interface: Power,
Area, and Accuracy Co-Optimization for RRAM Crossbar-Based Mixed-Signal
Computing System. In DAC.

[57] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
2009. McPAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In MICRO.

[58] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie. 2017. DRISA: A
DRAM-Based Reconfigurable In-Situ Accelerator. In MICRO.

[59] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. 2016. Pinatubo: A Processing-
in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-Volatile
Memories. In DAC.

[60] J. Lienig. 2013. Electromigration and Its Impact on Physical Design in Future
Technologies. In ISPD.

16

https://github.com/ARCANA-Research/RACER-Artifacts/
https://github.com/ARCANA-Research/RACER-Artifacts/
https://doi.org/10.5281/zenodo.5495803
https://doi.org/10.5281/zenodo.5495803
https://doi.org/10.5281/zenodo.5495019
https://doi.org/10.5281/zenodo.5495019
https://gcc.gnu.org/
https://ark.intel.com/content/www/us/en/ark/products/192465/intel-xeon-platinum-8253-processor-22m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192465/intel-xeon-platinum-8253-processor-22m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192465/intel-xeon-platinum-8253-processor-22m-cache-2-20-ghz.html
http://www.itrs2.net/
https://www.seas.upenn.edu/~leebcc/tutorial/dsm14/01-sim.pdf
https://www.seas.upenn.edu/~leebcc/tutorial/dsm14/01-sim.pdf

RACER: Bit-Pipelined Processing Using Resistive Memory MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[61] Q. Luo, J. Yu, X. Zhang, K. H. Xue, J. H. Yuan, T. Gong, H. Lv, X. Xu, P. Yuan,
J. Yin, L. Tai, S. Long, Q. Liu, X. Miao, J. Li, and M. Liu. 2019. Nb1–xO2 Based
Universal Selector With Ultra-High Endurance (>1012), High Speed (10 ns) and
Excellent Vth Stability. In VLSIT.

[62] H. Lv, X. Xu, P. Yuan, D. Dong, T. Gong, J. Liu, Z. Yu, P. Huang, K. Zhang, C. Huo,
C. Chen, Y. Xie, Q. Luo, S. Long, Q. Liu, J. Kang, D. Yang, S. Yin, S. Chiu, and
M. Liu. 2017. BEOL-Based RRAMWith One Extra-Mask for Low Cost, Highly
Reliable Embedded Application in 28 nm Node and Beyond. In IEDM.

[63] A. Makarov, V. Sverdlov, and S. Selberherr. 2012. Emerging Memory Technologies:
Trends, Challenges, and Modeling Methods. Microelectronics Reliability (Apr.
2012).

[64] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y.
Li, and C. J. Radens. 2002. Challenges and Future Directions for the Scaling of
Dynamic Random-Access Memory (DRAM). IBM JRD (Mar. 2002).

[65] O. Mutlu. 2013. Memory Scaling: A Systems Architecture Perspective. In IMW.
[66] S. Naffziger. 1996. A Sub-Nanosecond 0.5µm 64b Adder Design. In ISSCC.
[67] C. Nguyen, C. Cagli, E. Vianello, A. Perisco, G. Molas, G. Reimbold, Q. Rafhay, and

G. Ghibaudo. 2013. Advanced 1T1R Test Vehicle for RRAM Nanosecond-Range
Switching-Time Resolution and Reliability Assessment. In IISWC.

[68] NVIDIA Corp. [n. d.]. GeForce RTX 2070. https://www.nvidia.com/en-us/
geforce/graphics-cards/rtx-2070/.

[69] NVIDIA Corp. 2018. NVIDIA Turing GPU Architecture. White Paper WP-
09183-00. https://images.nvidia.com/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-
Whitepaper.pdf.

[70] NVIDIA Corp. 2021. CUDA Toolkit Documentation: Profiler. https://docs.nvidia.
com/cuda/profiler-users-guide/.

[71] A. Patel, F. Afram, S. Chen, and K. Ghose. 2011. MARSS: A Full System Simulator
for Multicore x86 CPUs. In DAC.

[72] I. Richter, K. Pas, X. Guo, R. Patel, J. Liu, E. Ipek, and E. G. Friedman. 2015.
Memristive Accelerator for Extreme Scale Linear Solvers. In GOMACTech.

[73] P. Rosenfeld, E. C.-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate
Memory System Simulator. CAL (Mar. 2011).

[74] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry. 2017. Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM Technology. In MICRO.

[75] V. Seshadri and O. Mutlu. 2017. Simple Operations in Memory to Reduce Data
Movement. In Advances in Computers. Vol. 106. Elsevier.

[76] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural Network
Accelerator With In-Situ Analog Arithmetic in Crossbars. In ISCA.

[77] W. C. Shen, C. Yu. Mei, Y. D. Chih, S. Sheu, M. Tsai, Y. King, and C. J. Lin. 2012.
High-K Metal Gate Contact RRAM (CRRAM) in Pure 28 nm CMOS Logic Process.
In IEDM.

[78] R. S. Shenoy, G.W. Burr, K. Virwani, B. Jackson, A. Padilla, P. Narayanan, C. T. Ret-
tner, R. M. Shelby, D. S. Bethune, K. V. Raman, M. Brightsky, E. Joseph, P. M. Rice,
T. Topuria, A. J. Kellock, B. Kurdi, and K. Gopalakrishnan. 2014. MIEC (Mixed-
Ionic-Electronic-Conduction)-Based Access Devices for Non-Volatile Crossbar
Memory Arrays. SST (Oct. 2014).

[79] S. Sheu, P. Chiang, W. Lin, H. Lee, P. Chen, Y. Chen, T. Wu, F. T. Chen, K. Su, M.
Kao, K. Cheng, and M. Tsai. 2009. A 5ns Fast Write Multi-Level Non-Volatile 1K
Bits RRAM Memory With Advance Write Scheme. In VLSIC.

[80] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler. 2018. Logic Synthe-
sis for RRAM-Based In-Memory Computing. TCAD (Jul. 2018).

[81] L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined ReRAM-Based
Accelerator for Deep Learning. In HPCA.

[82] Y.F. Tan, Y.-T Su amd M.-C Chen, T.-C. Chang, T-M. Tsai, Y.-T. Tseng, C.-C. Yang,
H.-X. Zheng, W.-C. Chen, and C.-C. Lin. 2019. The Influence of Temperature
on Set Voltage for Different High Resistance State in 1T1R Devices. APEX (Feb.
2019).

[83] Tech Power Up. [n. d.]. GeForce RTX 2070. https://www.techpowerup.com/gpu-
specs/geforce-rtx-2070.c3252.

[84] A. Torrezan, J. P. Strachn, G. Medeiros-Ribeiro, and R. S. Williams. 2011. Sub-
Nanosecond Switching Of A Tantalum Oxide Memristor. In Nanotechnology.

[85] X. A. Tran, B. Gao, J. F. Kang, L. Wu, Z. R. Wang, Z. Fang, K. L . Pey, Y. C. Yeo, A. Y.
Du, B. Y. Nguyen, M. F. Li, and H. Y. Yu and. 2011. High Performance Unipolar
AlOy/HfOx/Ni Based RRAM Compatible With Si Diodes for 3D Application. In
VLSIT.

[86] J. Volder. 1959. The CORDIC Computing Technique. In WJCC.
[87] J. Wang, X. Dong, and Y. Xie. 2014. Enabling High-Performance LPDDRx-

Compatible MRAM. In ISLPED.
[88] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,

and M.-J. Tsai. 2012. Metal-Oxide RRAM. Proc. IEEE (Jun. 2012).
[89] x86 CPUs’ Guide. [n. d.]. Intel Xeon Platinum 8153. http://www.x86-guide.net/

en/cpu/Intel-Xeon-Platinum-8153-cpu-no6299.html.
[90] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels. 2015. Fast Boolean

Logic Mapped on Memristor Crossbar. In ICCD.
[91] K. G. Young-Fisher, G. Bersuker, B. Butcher, A. Padovani, L. Larcher, D. Veksler,

and D. C. Gilmer. 2013. Leakage Current-Forming Voltage Relation and Oxygen
Gettering in HfOx RRAM Devices. EDL (May 2013).

[92] J. Yu, H. A. D. Nguyen, L. Xie, M. Taouil, and S. Hamdioui. 2018. Memristive
Devices for Computation-in-Memory. In DATE.

[93] S. Yu and Y. P. Chen. 2016. Emerging Memory Technologies: Recent Trends and
Prospects. SCC-M (Spring 2016).

[94] Y. Zha and J. Li. 2018. Liquid Silicon: A Data-Centric Reconfigurable Architecture
Enabled by RRAM Technology. In FPGA.

17

https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2070/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2070/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://www.techpowerup.com/gpu-specs/geforce-rtx-2070.c3252
https://www.techpowerup.com/gpu-specs/geforce-rtx-2070.c3252
http://www.x86-guide.net/en/cpu/Intel-Xeon-Platinum-8153-cpu-no6299.html
http://www.x86-guide.net/en/cpu/Intel-Xeon-Platinum-8153-cpu-no6299.html

	Abstract
	1 Introduction
	2 Background
	2.1 Crossbar Topology for Memories
	2.2 ReRAM Devices
	2.3 NOR-Based Computation with ReRAM

	3 Motivation
	3.1 Computing on Entire Columns of Data
	3.2 Scaling ReRAM Arrays
	3.3 Crossbar Size Limitations

	4 RACER Cluster Design
	4.1 Communicating Using Buffers
	4.2 Bit-Pipelining
	4.3 Pipeline Control Circuitry
	4.4 Read/Write Circuitry
	4.5 Control Amortization & Cluster Scaling

	5 RACER Architecture
	5.1 RACER Instruction Set Architecture
	5.2 Data Sharing Network
	5.3 Support for Non-Pipelined Operations
	5.4 Example Application: grep
	5.5 System-Level Considerations

	6 Methodology
	7 Evaluation
	7.1 Area & Circuit Synthesis Analysis
	7.2 Performance Analysis
	7.3 Energy Analysis
	7.4 Lifetime Analysis
	7.5 Comparison to CASCADE

	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	References

