
RACER: Bit-Pipelined Processing Using Resistive Memory*

Minh S. Q. Truong† Eric Chen† Deanyone Su† Alexander Glass†

Liting Shen† L. Richard Carley† James A. Bain† Saugata Ghose‡

†Carnegie Mellon University ‡University of Illinois Urbana-Champaign

Many modern applications perform large-scale data processing
that generates a high amount of data movement between the
main memory and the CPU in a conventional computer, con-
suming significant energy [1]. Recent works have proposed
new device innovations based on the principle of processing-
using-memory (PUM) [3] to mitigate data movement over-
heads. The PUM paradigm takes advantage of direct elec-
trical interactions between interconnected memory cells to
perform primitive computational functions, in addition to the
cells’ original role as data storage. As DRAM scaling issues
continue to be difficult to solve [6, 7], researchers have been
developing several emerging memory alternatives, including
resistive memory technologies such as MRAM, PCM, and
ReRAM.1 Resistive memories are attractive alternatives to
DRAM as PUM-enabling technologies because of their abil-
ity to perform logically-complete bitwise Boolean operations
(e.g., ReRAM-based NOR [5]) without relying on additional
compute circuitry and because of their higher memory densi-
ties. Prior works have taken advantage of the computational
capability of resistive crossbars [4, 9] to realize bit-serial com-
putation (e.g., ripple-carry addition), and to run data-intensive
applications (e.g., neural network inferencing). In a resistive
crossbar array, it is possible to take an entire column of the
array and perform a bitwise Boolean primitive with an entire
second column of the array. As a result, for a column of size
n, we can potentially increase the throughput by a factor of n
by performing whole-column operations, which can amortize
the latency of bit-serial operations if n is large enough.

In our MICRO 2021 paper, we show that while large cross-
bars (i.e., n≥ 1024) have traditionally been seen as an effective
way to amortize bit-serial latencies and peripheral circuit area
for PUM architectures, there is a fundamental limit to increas-
ing n. Even with aggressive technology scaling, it will be
challenging to achieve a value of n that is much larger than
128 in practice (see Section 3.3 of the MICRO 2021 paper).
This motivates us to design RACER (Resistive Accelerated
Computation for Energy Reduction). RACER is the first PUM
architecture that addresses this array size limitation, relying
on a novel execution model we call bit-pipelining to operate
on w×n words at a time, for a w-bit word, and provide high
throughput for a range of data-intensive operations.

Unlike prior works, which focus on a particular mem-
ory technology and logic primitive, RACER can be adopted
for any resistive crossbar memory (including ReRAM and
MRAM) that can perform any functionally-complete set of
logic primitives in memory. In this work, we use redox-based
RAM (ReRAM) as a motivating example, and base the archi-
tecture on small 64×64 ReRAM tiles capable of performing
whole-column NOR [5]. Our design decisions in RACER use
state-of-the-art device-level information (see Section 3.2 of

*Full Paper: M. S. Q. Truong et al., “RACER: Bit-Pipelined Processing
Using Resistive Memory”, in MICRO, October 2021. PDF available at
https://ghose.cs.illinois.edu/papers/21micro_racer.pdf

1We use the term resistive memory to refer broadly to resistance-based
non-volatile memories (e.g., PCM, MRAM, ReRAM), while we use ReRAM
to refer specifically to oxide-based switches (often referred to as memristors).

our MICRO 2021 paper) to drive the co-design of circuits,
microarchitecture, and an ISA.

Bit-Pipelining. RACER exploits parallelism across multiple
tiles by striping each bit of a w-bit word across w tiles, as
shown in Figure 1 (Tile 0 holds the least-significant bit, or
LSB). RACER can realize bit-serial operations by iteratively
applying column-wide Boolean logic primitives (e.g., NOR
in ReRAM) one tile at a time. As a simple example, RACER
performs ripple-carry addition tile-by-tile: at each bit i, it
generates the sum and carry-out bits in Tile i for 64 different
addition calculations simultaneously, and then propagates the
carry-out bits to Tile i + 1 to compute the next bit.

Figure 1: Tile and buffer design, showing two four-bit values
(1101 in red, 0110 in blue) striped across the tiles.

To enable inter-tile data transfer, RACER uses buffers, 1×64
crossbars (made of the same device as the tiles) that connect
to a pair of tiles using programmable pass gates (Figure 1).
Buffers allow tiles to transfer data without using area-intensive
CMOS converters, and allow us to tightly lay them out next to
the tiles, incurring minimal area overhead. RACER ensures
that a buffer connects to only one tile at a time. For our ad-
dition example, after computing the carry-out bits in Tile i,
RACER connects Tile i to Buffer i, copies the carry-out col-
umn into the buffer, and then connects the buffer to Tile i + 1.
The buffer’s contents are finally copied into Tile i + 1, where
the column is used as the carry-in bits for bit i + 1’s addition.

Our decoupled tile-by-tile computation allows us to pipeline
across bits in RACER. We group w tiles and their correspond-
ing buffers together to form a pipeline (we set w = 64 to support
up to 64-bit computation) that can support bit-pipelining. We
observe that after Tile i passes its generated column to Tile i+1,
Tile i is free to perform another sequence of combinational
logic operations, on another set of n computations (different
from the n computations that Tile i + 1 is working on in paral-
lel). This allows RACER to have up to w×n instructions being
carried out simultaneously in a set of w tiles, each operating
on n words at once.

Controlling RACER. In RACER, we exploit our observation
that many bit-serial operations perform the same Boolean
primitives on each bit to design efficient control logic. For such
operations, RACER generates a sequence of NOR primitives
for one tile, and then propagates the sequence from tile to
tile. A byte group (Figure 2a) contains the control circuitry
to enable bit-pipelining across eight consecutive tiles, with
one micro-op queue per tile. Each queue holds a sequence
of micro-ops (i.e., NOR primitives), and can control which
columns are operated on. RACER propagates primitives from
the head of one micro-op queue to the tail of the next micro-op
queue in a byte group. RACER can configure whether adjacent

1

https://ghose.cs.illinois.edu/papers/21micro_racer.pdf


byte groups are connected together to allow propagation across
byte groups, effectively enabling the ability to perform bit-
pipelining at the 8-, 16-, 32-, or 64-bit granularity (to match
common data widths). The micro-ops drive selection voltages
in per-tile decode & drive units, which serve as the interface
between the technology-agnostic byte group circuits and the
technology-specific crossbar voltages.

(a) (b)
Figure 2: (a) Byte group; (b) RACER cluster: 8 byte groups,

64 pipelines, and shared read/write (R/W) circuitry.

While RACER is optimized for bit-pipelined operations, we
can use it to enable a number of shift-based, non-pipelined
operations. We demonstrate how RACER can perform integer
multiply, multiply–accumulate, integer divide, and CORDIC-
based trigonometric functions and square root. While the
execution behavior for non-pipelined operations is more com-
plicated than that of bit-serial operations, we can leverage
RACER’s bit-striping and ReRAM buffers to efficiently per-
form these operations without additional hardware (see Sec-
tion 5.3 of our MICRO 2021 paper).

Granularity & Scalability. We design RACER to be highly
scalable. We group 64 pipelines into a cluster (Figure 2b)
capable of storing and computing on 18 MB of data, a RACER
chip can contain an arbitrary number of clusters depending
on platform needs. Each cluster has its own control units and
peripheral circuitry, and can operate independently of other
clusters. The chip includes a data sharing network for inter-
cluster communication, where distributed network controllers
coordinate the communication.

Programmer Abstraction. We provide a high-level abstrac-
tion for RACER with three key components: (1) a lightweight
ISA with high-level operations (e.g., add, population count,
multiply–accumulate; see Table 2 in the MICRO 2021 paper);
(2) RACER cores, where each core is physically mapped to
a unique RACER pipeline, and exposes vector register sets
of different sizes (i.e., 8/16/32/64-bit registers) that provide
low-latency access to the 32 kB of memory cells within the
pipeline; and (3) a two-tier shared memory abstraction that
provides each RACER core with access to all on-chip data.

Evaluation. We synthesize and lay out all of the circuitry
for RACER. We carefully design the circuitry (and amortize
control circuitry across multiple pipelines) to maintain high
memory density in the entire chip. Our simulations show
that we can create an 8 GB RACER chip with a 333 MHz
frequency that fits within a 4 cm2 area.

Using a range of data-intensive microbenchmarks extracted
from real-world applications (image processing, linear alge-
bra, signal processing, classification, and string matching) we
perform area-equivalent comparisons of RACER to (1) Base-

line: a modern 16-core Xeon CPU with conventional DRAM,
(2) eMRAM: the same CPU with on-chip high-bandwidth
embedded MRAM, (3) RTX-2070: a modern NVIDIA GPU
with 2304 shader cores, and (4) DC: the Duality Cache SRAM-
based PUM architecture [2]. We show in Section 7 of the main
paper that RACER outperforms all four of these state-of-the-
art systems while providing large energy savings. Figure 3
shows the performance and energy of Baseline, eMRAM,
RTX-2070, and RACER-4096, an iso-area version of RACER
with 4096 clusters. RACER achieves an average speedup
of 107× and energy savings of 189× compared to Baseline,
because it can take advantage of tile-/pipeline-/cluster-level
parallelism, while reducing data movement costs significantly.
RACER achieves a speedup of 71× and energy savings of
94× compared to eMRAM, showing that RACER’s benefits
go beyond simply eliminating movement on the memory bus.
Compared to RTX-2070, RACER achieves a 12× speedup
and 17× energy savings. While not shown in the figure for
brevity, RACER achieves a 6.7× speedup and 1.3× energy
savings compared to DC, as DC’s much larger SRAM cells
and discrete CMOS logic limit its memory capacity, resulting
in costly data swapping between DC and main memory.

Figure 3: Speedup and energy savings, normalized to Baseline.

Significance. We highlight two key contributions of RACER.
First, the array size limitation is expected to hold for any
resistive crossbar technology capable of performing whole-
column operations. RACER’s decode & drive units are the
only components that are device-specific, with the rest of the
architecture and abstraction being fully device-agnostic, allow-
ing for a wide range of technologies to overcome array size
limitations (we discuss this in our follow-on work [8]). Sec-
ond, RACER provides ultra-efficient, highly-scalable support
for a wide range of workloads, going beyond inferencing. This
can enable new types of self-sufficient smart sensors where
network connectivity is highly intermittent, by providing pow-
erful on-device analysis without the need for the cloud.
References
[1] A. Boroumand et al., “Google Workloads for Consumer Devices: Miti-

gating Data Movement Bottlenecks,” in ASPLOS, 2018.
[2] D. Fujiki et al., “Duality Cache for Data Parallel Acceleration,” in ISCA,

2019.
[3] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspec-

tive,” IBM JRD, Nov.–Dec. 2019.
[4] M. Imani et al., “FloatPIM: In-Memory Acceleration of Deep Neural

Network Training With High Precision,” in ISCA, 2018.
[5] S. Kvantinsky et al., “MAGIC: Memristor-Aided Logic,” TCAS II, Sep.

2014.
[6] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in

IMW, 2013.
[7] S. Shiratake, “Scaling and Performance Challenges of Future DRAM,”

in IMW, 2020.
[8] M. S. Q. Truong et al., “Adapting the RACER Architecture to Integrate

Improved In-ReRAM Logic Primitives,” JETCAS, 2022.
[9] Y. Zha and J. Li, “Liquid Silicon: A Data-Centric Reconfigurable Archi-

tecture Enabled by RRAM Technology,” in FPGA, 2018.

2


